- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Prove that$ \frac{a+b+c}{a^{-1} b^{-1}+b^{-1} c^{-1}+c^{-1} a^{-1}}=a b c $
Given:
\( \frac{a+b+c}{a^{-1} b^{-1}+b^{-1} c^{-1}+c^{-1} a^{-1}}=a b c \)
To do:
We have to prove that \( \frac{a+b+c}{a^{-1} b^{-1}+b^{-1} c^{-1}+c^{-1} a^{-1}}=a b c \).
Solution:
We know that,
$(a^{m})^{n}=a^{m n}$
$a^{m} \times a^{n}=a^{m+n}$
$a^{m} \div a^{n}=a^{m-n}$
$a^{0}=1$
LHS $=\frac{a+b+c}{a^{-1} b^{-1}+b^{-1} c^{-1}+c^{-1} a^{-1}}$
$=\frac{a+b+c}{\frac{1}{a b}+\frac{1}{b c}+\frac{1}{c a}}$
$=\frac{a+b+c}{\frac{c+a+b}{a b c}}$
$=\frac{(a+b+c) a b c}{(a+b+c)}$
$=a b c$
$=$ RHS
Hence proved.
- Related Articles
- Prove that\( \frac{1}{1+x^{b-a}+x^{c-a}}+\frac{1}{1+x^{a-b}+x^{c-b}}+\frac{1}{1+x^{b-c}+x^{a-c}}=1 \)
- If \( a b c=1 \), show that \( \frac{1}{1+a+b^{-1}}+\frac{1}{1+b+c^{-1}}+\frac{1}{1+c+a^{-1}}=1 \)
- Show that:\( \left(x^{\frac{1}{a-b}}\right)^{\frac{1}{a-c}}\left(x^{\frac{1}{b-c}}\right)^{\frac{1}{b-a}}\left(x^{\frac{1}{c-a}}\right)^{\frac{1}{c-b}}=1 \)
- Prove that\( \frac{1}{1+x^{a-b}}+\frac{1}{1+x^{b-a}}=1 \)
- Prove that \( \frac{a^{-1}}{a^{-1}+b^{-1}}+\frac{a^{-1}}{a^{-1}-b^{-1}}=\frac{2 b^{2}}{b^{2}-a^{2}} \)
- Prove that\( \left(a^{-1}+b^{-1}\right)^{-1}=\frac{a b}{a+b} \)
- Show that:\( \frac{1}{1+x^{a-b}}+\frac{1}{1+x^{b-a}}=1 \)
- Prove that the points $(a, 0), (0, b)$ and $(1, 1)$ are collinear if, $\frac{1}{a} + \frac{1}{b} = 1$.
- If $a = xy^{p-1}, b = xy^{q-1}$ and $c = xy^{r-1}$, prove that $a^{q-r} b^{r-p} c^{p-q} = 1$.
- Simplify: $-\frac{1}{2}a^{2}b^{2}c+\frac{1}{3}ab^{2}c-\frac{1}{4}abc^{2}-\frac{1}{5}cb^{2}a^{2}+\frac{1}{6}cb^{2}a-\frac{1}{7}c^{2}ab+\frac{1}{8}ca^{2}b$.
- Verify that $a ÷ (b+c) ≠ (a ÷ b) + (a ÷ c)$ for each of the following values of $a,\ b$ and $c$.(a) $a=12,\ b=- 4,\ c=2$(b) $a=(-10),\ b = 1,\ c = 1$
- If $V$ is the volume of a cuboid of dimensions $a, b, c$ and $S$ is its surface area, then prove that$\frac{1}{\mathrm{~V}}=\frac{2}{\mathrm{~S}}(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})$
- In ∆ABC, $\angle C=90^o$ and $tan A=\frac{1}{\sqrt3}$. Prove that $Sin ACos B+Cos A Sin B=1$.
- Find the numerical value of \( P: Q \) where \( \mathrm{P}=\left(\frac{x^{m}}{x^{n}}\right)^{m+n-l} \times\left(\frac{x^{n}}{x^{l}}\right)^{n+l-m} \times\left(\frac{x^{l}}{x^{m}}\right)^{l+m-n} \) and\( \mathrm{Q}=\left(x^{1 /(a-b)}\right)^{1 /(a-c)} \times\left(x^{1 /(b-c)}\right)^{1 /(b-a)} \times\left(x^{1 /(c-a)}\right)^{1 /(c-b)} \)where \( a, b, c \) being all different.A. \( 1: 2 \)B. \( 2: 1 \)C. \( 1: 1 \)D. None of these
- If the points $A( -2,\ 1) ,\ B( a,\ b)$ and $C( 4,\ -1)$ are collinear and $a-b=1$, find the values of $a$ and $b$.

Advertisements