$ \mathrm{XY} $ is a line parallel to side $ \mathrm{BC} $ of a triangle $ \mathrm{ABC} $. If $ \mathrm{BE} \| \mathrm{AC} $ and $ \mathrm{CF} \| \mathrm{AB} $ meet $ \mathrm{XY} $ at $ \mathrm{E} $ and $ F $ respectively, show that $ \operatorname{ar}(\mathrm{ABE})=\operatorname{ar}(\mathrm{ACF}) $.
Given:
\( \mathrm{XY} \) is a line parallel to side \( \mathrm{BC} \) of a triangle \( \mathrm{ABC} \).
\( \mathrm{BE} \| \mathrm{AC} \) and \( \mathrm{CF} \| \mathrm{AB} \) meet \( \mathrm{XY} \) at \( \mathrm{E} \) and \( F \) respectively.
To do:
We have to show that \( \operatorname{ar}(\mathrm{ABE})=\operatorname{ar}(\mathrm{ACF}) \).
Solution:
$BE \| AC$
This implies,
$BE \| CY$
$CF \| AB$
This implies,
$CF \| XB$
$XY \| BC$ and $CY \| BE$
Therefore,
$EYCB$ is a parallelogram.
$\triangle \mathrm{ABE}$ and parallelogram $EYCB$ lie on the same base $BE$ and between the parallels $B E$ and $A C$.
This implies,
$ar(\triangle \mathrm{ABE})=\frac{1}{2} ar(\mathrm{EYCB})$........(i)
$C F \| A B$ and $X F \| B C$
This implies,
$BCFX$ is a parallelogram.
$\triangle \mathrm{ACF}$ and parallelogram $BCFX$ lie on the same base $CF$ and between the parallels $A B$ and $CF$.
Therefore,
$ar(\triangle \mathrm{ACF})=\frac{1}{2}ar(\mathrm{BCFX})$..........(ii)
Parallelogram $BCFX$ and parallelogram $BCYE$ lie on the same base $BC$ and
between parallels $\mathrm{BC}$ and $\mathrm{EF}$.
Therefore,
$\operatorname{ar}(\mathrm{BCFX})=\operatorname{ar}(BCYE)$..........(iii)
From (i), (ii) and (iii), we get,
$\operatorname{ar}(\triangle \mathrm{ABE})=\operatorname{ar}(\triangle \mathrm{ACF})$
Hence proved.
Related Articles In figure, \( \mathrm{ABC} \) and \( \mathrm{BDE} \) are two equilateral triangles such that \( \mathrm{D} \) is the mid-point of \( \mathrm{BC} \). If \( \mathrm{AE} \) intersects \( \mathrm{BC} \) at \( \mathrm{F} \), show that(i) \( \operatorname{ar}(\mathrm{BDE})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC}) \)(ii) \( \operatorname{ar}(\mathrm{BDE})=\frac{1}{2} \operatorname{ar}(\mathrm{BAE}) \)(iii) \( \operatorname{ar}(\mathrm{ABC})=2 \) ar \( (\mathrm{BEC}) \)(iv) \( \operatorname{ar}(\mathrm{BFE})=\operatorname{ar}(\mathrm{AFD}) \)(v) \( \operatorname{ar}(\mathrm{BFE})=2 \operatorname{ar}(\mathrm{FED}) \)(vi) \( \operatorname{ar}(\mathrm{FED})=\frac{1}{8} \operatorname{ar}(\mathrm{AFC}) \)[Hint: Join \( \mathrm{EC} \) and \( \mathrm{AD} \). Show that \( \mathrm{BE} \| \mathrm{AC} \) and \( \mathrm{DE} \| \mathrm{AB} \)
\( \mathrm{D}, \mathrm{E} \) and \( \mathrm{F} \) are respectively the mid-points of the sides \( \mathrm{BC}, \mathrm{CA} \) and \( \mathrm{AB} \) of a \( \triangle \mathrm{ABC} \). Show that(i) BDEF is a parallelogram.(ii) \( \operatorname{ar}(\mathrm{DEF})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC}) \)(iii) \( \operatorname{ar}(\mathrm{BDEF})=\frac{1}{2} \operatorname{ar}(\mathrm{ABC}) \)
In figure below, \( \mathrm{ABC} \) is a right triangle right angled at \( \mathrm{A} . \mathrm{BCED}, \mathrm{ACFG} \) and \( \mathrm{ABMN} \) are squares on the sides \( \mathrm{BC}, \mathrm{CA} \) and \( \mathrm{AB} \) respectively. Line segment \( \mathrm{AX} \perp \mathrm{DE} \) meets \( \mathrm{BC} \) at Y. Show that:(i) \( \triangle \mathrm{MBC} \cong \triangle \mathrm{ABD} \)(ii) \( \operatorname{ar}(\mathrm{BYXD})=2 \operatorname{ar}(\mathrm{MBC}) \)(iii) \( \operatorname{ar}(\mathrm{BYXD})=\operatorname{ar}(\mathrm{ABMN}) \)(iv) \( \triangle \mathrm{FCB} \cong \triangle \mathrm{ACE} \)(v) \( \operatorname{ar}(\mathrm{CYXE})=2 \operatorname{ar}(\mathrm{FCB}) \)(vi) \( \operatorname{ar}(\mathrm{CYXE})=\operatorname{ar}(\mathrm{ACFG}) \)(vii) ar \( (\mathrm{BCED})=\operatorname{ar}(\mathrm{ABMN})+\operatorname{ar}(\mathrm{ACFG}) \)"
In figure below, ABCDE is a pentagon. A line through \( \mathrm{B} \) parallel to \( \mathrm{AC} \) meets \( \mathrm{DC} \) produced at F. Show that(i) \( \operatorname{ar}(\mathrm{ACB})=\operatorname{ar}(\mathrm{ACF}) \)(ii) \( \operatorname{ar}(\mathrm{AEDF})=\operatorname{ar}(\mathrm{ABCDE}) \)"\n
\( \mathrm{D} \) and \( \mathrm{E} \) are points on sides \( \mathrm{AB} \) and \( \mathrm{AC} \) respectively of \( \triangle \mathrm{ABC} \) such that ar \( (\mathrm{DBC})=\operatorname{ar}(\mathrm{EBC}) \). Prove that $DE\|BC$.
\( \mathrm{ABCD} \) is a trapezium with \( \mathrm{AB} \| \mathrm{DC} \). A line parallel to \( \mathrm{AC} \) intersects \( \mathrm{AB} \) at \( \mathrm{X} \) and \( \mathrm{BC} \) at Y. Prove that ar \( (\mathrm{ADX})=\operatorname{ar}(\mathrm{ACY}) \).[Hint: Join CX.]
In figure below, \( \mathrm{P} \) is a point in the interior of a parallelogram \( \mathrm{ABCD} \). Show that(i) \( \operatorname{ar}(\mathrm{APB})+\operatorname{ar}(\mathrm{PCD})=\frac{1}{2} \operatorname{ar}(\mathrm{ABCD}) \)(ii) \( \operatorname{ar}(\mathrm{APD})+\operatorname{ar}(\mathrm{PBC})=\operatorname{ar}(\mathrm{APB})+\operatorname{ar}(\mathrm{PCD}) \)[Hint: Through \( \mathrm{P} \), draw a line parallel to \( \mathrm{AB} \).]"\n
\( P \) and \( Q \) are respectively the mid-points of sides \( \mathrm{AB} \) and \( \mathrm{BC} \) of a triangle \( \mathrm{ABC} \) and \( \mathrm{K} \) is the mid-point of \( \mathrm{AP} \), show that(i) \( \operatorname{ar}(\mathrm{PRQ})=\frac{1}{2} \operatorname{ar}(\mathrm{ARC}) \)(ii) ar \( (\mathrm{RQC})=\frac{3}{8} \) ar \( (\mathrm{ABC}) \)(iii) ar \( (\mathrm{PBQ})=\operatorname{ar}(\mathrm{ARC}) \)
In figure below, $D$ and \( \mathrm{E} \) are two points on \( \mathrm{BC} \) such that \( \mathrm{BD}=\mathrm{DE}=\mathrm{EC} \). Show that \( \operatorname{ar}(\mathrm{ABD})=\operatorname{ar}(\mathrm{ADE})=\operatorname{ar}(\mathrm{AEC}) \)."\n
Diagonals \( \mathrm{AC} \) and \( \mathrm{BD} \) of a quadrilateral \( \mathrm{ABCD} \) intersect each other at \( \mathrm{P} \). Show that ar \( (\mathrm{APB}) \times \operatorname{ar}(\mathrm{CPD})=\operatorname{ar}(\mathrm{APD}) \times \operatorname{ar}(\mathrm{BPC}) \).[Hint: From \( \mathrm{A} \) and \( \mathrm{C} \), draw perpendiculars to \( \mathrm{BD} \).]
In figure below, \( \mathrm{ABC} \) and \( \mathrm{ABD} \) are two triangles on the same base \( \mathrm{AB} \). If line- segment \( \mathrm{CD} \) is bisected by \( \mathrm{AB} \) at \( \mathrm{O} \), show that \( \operatorname{ar}(\mathrm{ABC})=\operatorname{ar}(\mathrm{ABD}) \)."\n
In figure below, diagonals \( \mathrm{AC} \) and \( \mathrm{BD} \) of quadrilateral \( \mathrm{ABCD} \) intersect at \( \mathrm{O} \) such that \( \mathrm{OB}=\mathrm{OD} \).If \( \mathrm{AB}=\mathrm{CD} \), then show that:(i) \( \operatorname{ar}(\mathrm{DOC})=\operatorname{ar}(\mathrm{AOB}) \)(ii) \( \operatorname{ar}(\mathrm{DCB})=\operatorname{ar}(\mathrm{ACB}) \)(iii) DA\| \( \mathrm{CB} \) or \( \mathrm{ABCD} \) is a parallelogram.[Hint : From D and B, draw perpendiculars to AC.]"\n
In figure below, $E$ is any point on median \( \mathrm{AD} \) of a \( \triangle \mathrm{ABC} \). Show that ar \( (\mathrm{ABE})=\operatorname{ar}(\mathrm{ACE}) \)."\n
\( \mathrm{ABC} \) is a triangle in which altitudes \( \mathrm{BE} \) and \( \mathrm{CF} \) to sides \( \mathrm{AC} \) and \( \mathrm{AB} \) are equal (see Fig. 7.32). Show that(i) \( \triangle \mathrm{ABE} \cong \triangle \mathrm{ACF} \)(ii) \( \mathrm{AB}=\mathrm{AC} \), i.e., \( \mathrm{ABC} \) is an isosceles triangle."\n
Diagonals \( \mathrm{AC} \) and \( \mathrm{BD} \) of a trapezium \( \mathrm{ABCD} \) with \( \mathrm{AB} \| \mathrm{DC} \) intersect each other at \( \mathrm{O} \). Prove that ar \( (\mathrm{AOD})=\operatorname{ar}(\mathrm{BOC}) \).
Kickstart Your Career
Get certified by completing the course
Get Started