$ \mathrm{ABCD} $ is a trapezium with $ \mathrm{AB} \| \mathrm{DC} $. A line parallel to $ \mathrm{AC} $ intersects $ \mathrm{AB} $ at $ \mathrm{X} $ and $ \mathrm{BC} $ at Y. Prove that ar $ (\mathrm{ADX})=\operatorname{ar}(\mathrm{ACY}) $. [Hint: Join CX.]
Given:
\( \mathrm{ABCD} \) is a trapezium with \( \mathrm{AB} \| \mathrm{DC} \). A line parallel to \( \mathrm{AC} \) intersects \( \mathrm{AB} \) at \( \mathrm{X} \) and \( \mathrm{BC} \) at Y.
To do:
We have to prove that ar \( (\mathrm{ADX})=\operatorname{ar}(\mathrm{ACY}) \).
Solution:
$AC \| XY$
Join $CX, AY$ and $DX$
$\triangle ADX$ and $\triangle ACX$ lie on the same base $AX$ and between the parallels $AB$ and $DC$.
Therefore,
$ar(\triangle ADX) = ar(\triangle ACX)$.....…(i)
$\triangle ACX$ and $\triangle ACY$ lie on the same base $AC$ and between the parallels $AC$ and $XY$.
Therefore,
$ar(\triangle ACX) = ar(\triangle ACY)$.......…(ii)
From (i) and (ii), we get,
$ar(\triangle ADX) =ar(\triangle ACX)= ar(\triangle ACY)$
This implies,
$ar(\triangle ADX) = ar(\triangle ACY)$
Hence proved.
Related Articles Diagonals \( \mathrm{AC} \) and \( \mathrm{BD} \) of a trapezium \( \mathrm{ABCD} \) with \( \mathrm{AB} \| \mathrm{DC} \) intersect each other at \( \mathrm{O} \). Prove that ar \( (\mathrm{AOD})=\operatorname{ar}(\mathrm{BOC}) \).
\( \mathrm{XY} \) is a line parallel to side \( \mathrm{BC} \) of a triangle \( \mathrm{ABC} \). If \( \mathrm{BE} \| \mathrm{AC} \) and \( \mathrm{CF} \| \mathrm{AB} \) meet \( \mathrm{XY} \) at \( \mathrm{E} \) and \( F \) respectively, show that \( \operatorname{ar}(\mathrm{ABE})=\operatorname{ar}(\mathrm{ACF}) \).
In figure below, \( \mathrm{P} \) is a point in the interior of a parallelogram \( \mathrm{ABCD} \). Show that(i) \( \operatorname{ar}(\mathrm{APB})+\operatorname{ar}(\mathrm{PCD})=\frac{1}{2} \operatorname{ar}(\mathrm{ABCD}) \)(ii) \( \operatorname{ar}(\mathrm{APD})+\operatorname{ar}(\mathrm{PBC})=\operatorname{ar}(\mathrm{APB})+\operatorname{ar}(\mathrm{PCD}) \)[Hint: Through \( \mathrm{P} \), draw a line parallel to \( \mathrm{AB} \).]"\n
In figure, \( \mathrm{ABC} \) and \( \mathrm{BDE} \) are two equilateral triangles such that \( \mathrm{D} \) is the mid-point of \( \mathrm{BC} \). If \( \mathrm{AE} \) intersects \( \mathrm{BC} \) at \( \mathrm{F} \), show that(i) \( \operatorname{ar}(\mathrm{BDE})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC}) \)(ii) \( \operatorname{ar}(\mathrm{BDE})=\frac{1}{2} \operatorname{ar}(\mathrm{BAE}) \)(iii) \( \operatorname{ar}(\mathrm{ABC})=2 \) ar \( (\mathrm{BEC}) \)(iv) \( \operatorname{ar}(\mathrm{BFE})=\operatorname{ar}(\mathrm{AFD}) \)(v) \( \operatorname{ar}(\mathrm{BFE})=2 \operatorname{ar}(\mathrm{FED}) \)(vi) \( \operatorname{ar}(\mathrm{FED})=\frac{1}{8} \operatorname{ar}(\mathrm{AFC}) \)[Hint: Join \( \mathrm{EC} \) and \( \mathrm{AD} \). Show that \( \mathrm{BE} \| \mathrm{AC} \) and \( \mathrm{DE} \| \mathrm{AB} \)
In figure below, \( \mathrm{ABCD} \) is a parallelogram and \( \mathrm{BC} \) is produced to a point \( \mathrm{Q} \) such that \( \mathrm{AD}=\mathrm{CQ} \). If \( \mathrm{AQ} \) intersect \( \mathrm{DC} \) at \( \mathrm{P} \), show that ar \( (\mathrm{BPC})= \) ar \( (\mathrm{DPQ}) \).[Hint : Join \( \mathrm{AC} \). \( ] \)"\n
Diagonals \( \mathrm{AC} \) and \( \mathrm{BD} \) of a quadrilateral \( \mathrm{ABCD} \) intersect each other at \( \mathrm{P} \). Show that ar \( (\mathrm{APB}) \times \operatorname{ar}(\mathrm{CPD})=\operatorname{ar}(\mathrm{APD}) \times \operatorname{ar}(\mathrm{BPC}) \).[Hint: From \( \mathrm{A} \) and \( \mathrm{C} \), draw perpendiculars to \( \mathrm{BD} \).]
In figure below, \( \mathrm{ABC} \) is a right triangle right angled at \( \mathrm{A} . \mathrm{BCED}, \mathrm{ACFG} \) and \( \mathrm{ABMN} \) are squares on the sides \( \mathrm{BC}, \mathrm{CA} \) and \( \mathrm{AB} \) respectively. Line segment \( \mathrm{AX} \perp \mathrm{DE} \) meets \( \mathrm{BC} \) at Y. Show that:(i) \( \triangle \mathrm{MBC} \cong \triangle \mathrm{ABD} \)(ii) \( \operatorname{ar}(\mathrm{BYXD})=2 \operatorname{ar}(\mathrm{MBC}) \)(iii) \( \operatorname{ar}(\mathrm{BYXD})=\operatorname{ar}(\mathrm{ABMN}) \)(iv) \( \triangle \mathrm{FCB} \cong \triangle \mathrm{ACE} \)(v) \( \operatorname{ar}(\mathrm{CYXE})=2 \operatorname{ar}(\mathrm{FCB}) \)(vi) \( \operatorname{ar}(\mathrm{CYXE})=\operatorname{ar}(\mathrm{ACFG}) \)(vii) ar \( (\mathrm{BCED})=\operatorname{ar}(\mathrm{ABMN})+\operatorname{ar}(\mathrm{ACFG}) \)"
In figure below, diagonals \( \mathrm{AC} \) and \( \mathrm{BD} \) of quadrilateral \( \mathrm{ABCD} \) intersect at \( \mathrm{O} \) such that \( \mathrm{OB}=\mathrm{OD} \).If \( \mathrm{AB}=\mathrm{CD} \), then show that:(i) \( \operatorname{ar}(\mathrm{DOC})=\operatorname{ar}(\mathrm{AOB}) \)(ii) \( \operatorname{ar}(\mathrm{DCB})=\operatorname{ar}(\mathrm{ACB}) \)(iii) DA\| \( \mathrm{CB} \) or \( \mathrm{ABCD} \) is a parallelogram.[Hint : From D and B, draw perpendiculars to AC.]"\n
In figure below, ABCDE is a pentagon. A line through \( \mathrm{B} \) parallel to \( \mathrm{AC} \) meets \( \mathrm{DC} \) produced at F. Show that(i) \( \operatorname{ar}(\mathrm{ACB})=\operatorname{ar}(\mathrm{ACF}) \)(ii) \( \operatorname{ar}(\mathrm{AEDF})=\operatorname{ar}(\mathrm{ABCDE}) \)"\n
The side \( \mathrm{AB} \) of a parallelogram \( \mathrm{ABCD} \) is produced to any point \( \mathrm{P} \). A line through \( \mathrm{A} \) and parallel to \( \mathrm{CP} \) meets \( C B \) produced at \( Q \) and then parallelogram PBQR is completed (see figure below). Show that \( \operatorname{ar}(\mathrm{ABCD})=\operatorname{ar}(\mathrm{PBQR}) \).[Hint : Join \( \mathrm{AC} \) and \( \mathrm{PQ} \). Now compare ar (ACQ)"\n
\( \mathrm{D} \) and \( \mathrm{E} \) are points on sides \( \mathrm{AB} \) and \( \mathrm{AC} \) respectively of \( \triangle \mathrm{ABC} \) such that ar \( (\mathrm{DBC})=\operatorname{ar}(\mathrm{EBC}) \). Prove that $DE\|BC$.
\( \mathrm{O} \) is the point of intersection of the diagonals \( \mathrm{AC} \) and \( \mathrm{BD} \) of a trapezium \( \mathrm{ABCD} \) with \( \mathrm{AB} \| \mathrm{DC} \). Through \( \mathrm{O} \), a line segment \( \mathrm{PQ} \) is drawn parallel to \( \mathrm{AB} \) meeting \( \mathrm{AD} \) in \( \mathrm{P} \) and \( \mathrm{BC} \) in \( \mathrm{Q} \). Prove that \( \mathrm{PO}=\mathrm{QO} \).
In a quadrilateral \( \mathrm{ABCD}, \angle \mathrm{A}+\angle \mathrm{D}=90^{\circ} \). Prove that \( \mathrm{AC}^{2}+\mathrm{BD}^{2}=\mathrm{AD}^{2}+\mathrm{BC}^{2} \) [Hint: Produce \( \mathrm{AB} \) and DC to meet at E]
Diagonals \( \mathrm{AC} \) and \( \mathrm{BD} \) of a quadrilateral \( A B C D \) intersect at \( O \) in such a way that ar \( (\mathrm{AOD})=\operatorname{ar}(\mathrm{BOC}) \). Prove that \( \mathrm{ABCD} \) is a trapezium.
In figure below, \( \mathrm{ABC} \) and \( \mathrm{ABD} \) are two triangles on the same base \( \mathrm{AB} \). If line- segment \( \mathrm{CD} \) is bisected by \( \mathrm{AB} \) at \( \mathrm{O} \), show that \( \operatorname{ar}(\mathrm{ABC})=\operatorname{ar}(\mathrm{ABD}) \)."\n
Kickstart Your Career
Get certified by completing the course
Get Started