In right triangle ABC, right angledat C. M is the mid-point of hypotenuse AB. C is joined to $ \mathrm{M} $ and produced to a point $ \mathrm{D} $ such that $ \mathrm{DM}=\mathrm{CM} $. Point $ \mathrm{D} $ is joined to point $ \mathrm{B} $. Show that: (i) $ \triangle A M C \cong \triangle B M D $ (ii) $ \angle \mathrm{DBC} $ is a right angle (iii) $ \triangle \mathrm{DBC} \cong \triangle \mathrm{ACB} $ (iv) $CM=\frac{1}{2}AB$ "
Given:
In right triangle ABC, right angledat C. M is the mid-point of hypotenuse AB. C is joined to \( \mathrm{M} \) and produced to a point \( \mathrm{D} \) such that \( \mathrm{DM}=\mathrm{CM} \). Point \( \mathrm{D} \) is joined to point \( \mathrm{B} \).
To do:
We have to show that
(i) \( \triangle A M C \cong \triangle B M D \) (ii) \( \angle \mathrm{DBC} \) is a right angle (iii) \( \triangle \mathrm{DBC} \cong \triangle \mathrm{ACB} \) (iv) $CM=\frac{1}{2}AB$
Solution:
$\angle ACB=90^o$
$AM=BM$
$DM=CM$
(i) In $\triangle AMC$ and $\triangle DMB$,
$AM=BM$
$CM=DM$
$\angle AMC=\angle BMD$ (Vertically opposite angles)
Therefore,
$\triangle AMC \cong\ \triangle DMB$ (By SAS congruence rule)
(ii) $\triangle AMC \cong\ \triangle DMB$
This implies,
$\angle ACM=\angle BDM$ (CPCT)
$\angle ACM$ and $\angle BDM$ are alternate angles to lines AC and BD.
This implies,
$AC \parallel\ BD$
$\angle ACB+\angle DBC=180^o$ (Angles on the same side of the transversal are supplementary)
$90^o+\angle DBC=180^o$
$\angle DBC=180^o-90^o$
$\angle DBC=90^o$
Therefore, $\angle DBC$ is a right angle.
(iii) In $\triangle ACB$ and $\triangle DBC$,
$AC=DB$ ($\triangle AMC \cong\ \triangle DMB$, CPCT)
$BC=BC$ (Common side)
$\angle ACB=\angle DBC=90^o$
Therefore,
$\triangle ACB \cong\ \triangle DBC$ (By SAS congruence rule)
(iv) $\triangle ACB \cong\ \triangle DBC$
This implies,
$AB=DC$ (CPCT)
$\frac{1}{2}AB=\frac{1}{2}DC$....(i)
$DM=CM=\frac{1}{2}DC$....(ii)
From (i) and (ii),
$CM=\frac{1}{2}AB$
Hence proved.
Related Articles In right triangle \( \mathrm{ABC} \), right angled at \( \mathrm{C}, \mathrm{M} \) is the mid-point of hypotenuse \( \mathrm{AB} \). \( \mathrm{C} \) is joined to \( \mathrm{M} \) and produced to a point \( \mathrm{D} \) such that \( \mathrm{DM}=\mathrm{CM} \). Point \( \mathrm{D} \) is joined to point \( \mathrm{B} \) (see Fig. 7.23). Show that:(i) \( \triangle \mathrm{AMC} \equiv \triangle \mathrm{BMD} \)(ii) \( \angle \mathrm{DBC} \) is a right angle.(iii) \( \triangle \mathrm{DBC} \equiv \triangle \mathrm{ACB} \)(iv) \( \mathrm{CM}=\frac{1}{2} \mathrm{AB} \)"
\( \mathrm{ABC} \) is a triangle right angled at \( \mathrm{C} \). A line through the mid-point \( \mathrm{M} \) of hypotenuse \( \mathrm{AB} \) and parallel to \( \mathrm{BC} \) intersects \( \mathrm{AC} \) at \( \mathrm{D} \). Show that(i) \( \mathrm{D} \) is the mid-point of \( \mathrm{AC} \)(ii) \( \mathrm{MD} \perp \mathrm{AC} \)(iii) \( \mathrm{CM}=\mathrm{MA}=\frac{1}{2} \mathrm{AB} \)
\( \triangle \mathrm{ABC} \) is an isosceles triangle in which \( \mathrm{AB}=\mathrm{AC} \). Side \( \mathrm{BA} \) is produced to \( \mathrm{D} \) such that \( \mathrm{AD}=\mathrm{AB} \) (see Fig. 7.34). Show that \( \angle \mathrm{BCD} \) is a right angle."\n
\( \mathrm{AB} \) is a line segment and \( \mathrm{P} \) is its mid-point. \( \mathrm{D} \) and \( \mathrm{E} \) are points on the same side of \( \mathrm{AB} \) such that \( \angle \mathrm{BAD}=\angle \mathrm{ABE} \) and \( \angle \mathrm{EPA}=\angle \mathrm{DPB} \) (see Fig. 7.22). Show that(i) \( \triangle \mathrm{DAP} \cong \triangle \mathrm{EBP} \)(ii) \( \mathrm{AD}=\mathrm{BE} \)"\n
Name the types of following triangles:(a) Triangle with lengths of sides \( 7 \mathrm{~cm}, 8 \mathrm{~cm} \) and \( 9 \mathrm{~cm} \).(b) \( \triangle \mathrm{ABC} \) with \( \mathrm{AB}=8.7 \mathrm{~cm}, \mathrm{AC}=7 \mathrm{~cm} \) and \( \mathrm{BC}=6 \mathrm{~cm} \).(c) \( \triangle \mathrm{PQR} \) such that \( \mathrm{PQ}=\mathrm{QR}=\mathrm{PR}=5 \mathrm{~cm} \).(d) \( \triangle \mathrm{DEF} \) with \( \mathrm{m} \angle \mathrm{D}=90^{\circ} \)(e) \( \triangle \mathrm{XYZ} \) with \( \mathrm{m} \angle \mathrm{Y}=90^{\circ} \) and \( \mathrm{XY}=\mathrm{YZ} \).(f) \( \Delta \mathrm{LMN} \) with \( \mathrm{m} \angle \mathrm{L}=30^{\circ}, \mathrm{m} \angle \mathrm{M}=70^{\circ} \) and \( \mathrm{m} \angle \mathrm{N}=80^{\circ} \).
\( \mathrm{ABC} \) is a right angled triangle in which \( \angle \mathrm{A}=90^{\circ} \) and \( \mathrm{AB}=\mathrm{AC} \). Find \( \angle \mathrm{B} \) and \( \angle \mathrm{C} \).
\( \mathrm{ABC} \) is a triangle in which altitudes \( \mathrm{BE} \) and \( \mathrm{CF} \) to sides \( \mathrm{AC} \) and \( \mathrm{AB} \) are equal (see Fig. 7.32). Show that(i) \( \triangle \mathrm{ABE} \cong \triangle \mathrm{ACF} \)(ii) \( \mathrm{AB}=\mathrm{AC} \), i.e., \( \mathrm{ABC} \) is an isosceles triangle."\n
In quadrilateral \( A C B D \),\( \mathrm{AC}=\mathrm{AD} \) and \( \mathrm{AB} \) bisects \( \angle \mathrm{A} \) (see Fig. 7.16). Show that \( \triangle \mathrm{ABC} \cong \triangle \mathrm{ABD} \).What can you say about \( \mathrm{BC} \) and \( \mathrm{BD} \) ?"64391"\n
\( \mathrm{ABCD} \) is a trapezium in which \( \mathrm{AB} \| \mathrm{CD} \) and \( \mathrm{AD}=\mathrm{BC} \) (see below figure). Show that(i) \( \angle \mathrm{A}=\angle \mathrm{B} \)(ii) \( \angle \mathrm{C}=\angle \mathrm{D} \)(iii) \( \triangle \mathrm{ABC} \equiv \triangle \mathrm{BAD} \)(iv) diagonal \( \mathrm{AC}= \) diagonal \( \mathrm{BD} \)[Hint: Extend \( \mathrm{AB} \) and draw a line through \( \mathrm{C} \) parallel to \( \mathrm{DA} \) intersecting \( \mathrm{AB} \) produced at E.]"\n
\( \triangle \mathrm{ABC} \) and \( \triangle \mathrm{DBC} \) are two isosceles triangles on the same base \( B C \) and vertices \( A \) and \( D \) are on the same side of \( \mathrm{BC} \) (see Fig. 7.39). If \( \mathrm{AD} \) is extended to intersect \( \mathrm{BC} \) at \( \mathrm{P} \), show that(i) \( \triangle \mathrm{ABD} \equiv \triangle \mathrm{ACD} \)(ii) \( \triangle \mathrm{ABP} \cong \triangle \mathrm{ACP} \)(iii) \( \mathrm{AP} \) bisects \( \angle \mathrm{A} \) as well as \( \angle \mathrm{D} \).(iv) AP is the perpendicular bisector of \( \mathrm{BC} \)."
\( \mathrm{ABC} \) is an isosceles triangle with \( \mathrm{AB}=\mathrm{AC} \). Draw \( \mathrm{AP} \perp \mathrm{BC} \) to show that \( \angle \mathrm{B}=\angle \mathrm{C} \).
In \( \triangle \mathrm{ABC}, \mathrm{M} \) and \( \mathrm{N} \) are the midpoints of \( \mathrm{AB} \) and \( \mathrm{AC} \) respectively. If the area of \( \triangle \mathrm{ABC} \) is \( 90 \mathrm{~cm}^{2} \), find the area of \( \triangle \mathrm{AMN} \).
Choose the correct answer from the given four options:It is given that \( \triangle \mathrm{ABC} \sim \triangle \mathrm{DFE}, \angle \mathrm{A}=30^{\circ}, \angle \mathrm{C}=50^{\circ}, \mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=8 \mathrm{~cm} \) and \( D F=7.5 \mathrm{~cm} \). Then, the following is true:(A) \( \mathrm{DE}=12 \mathrm{~cm}, \angle \mathrm{F}=50^{\circ} \)(B) \( \mathrm{DE}=12 \mathrm{~cm}, \angle \mathrm{F}=100^{\circ} \)(C) \( \mathrm{EF}=12 \mathrm{~cm}, \angle \mathrm{D}=100^{\circ} \)(D) \( \mathrm{EF}=12 \mathrm{~cm}, \angle \mathrm{D}=30^{\circ} \)
In figure below, line segment \( \mathrm{DF} \) intersect the side \( \mathrm{AC} \) of a triangle \( \mathrm{ABC} \) at the point \( \mathrm{E} \) such that \( \mathrm{E} \) is the mid-point of \( \mathrm{CA} \) and \( \angle \mathrm{AEF}=\angle \mathrm{AFE} \). Prove that \( \frac{\mathrm{BD}}{\mathrm{CD}}=\frac{\mathrm{BF}}{\mathrm{CE}} \)[Hint: Take point \( \mathrm{G} \) on \( \mathrm{AB} \) such that \( \mathrm{CG} \| \mathrm{DF} \).]"
In figure below, if \( \angle \mathrm{D}=\angle \mathrm{C} \), then is it true that \( \triangle \mathrm{ADE} \sim \triangle \mathrm{ACB} ? \) Why?"
Kickstart Your Career
Get certified by completing the course
Get Started