$ \mathrm{ABC} $ is a triangle right angled at $ \mathrm{C} $. A line through the mid-point $ \mathrm{M} $ of hypotenuse $ \mathrm{AB} $ and parallel to $ \mathrm{BC} $ intersects $ \mathrm{AC} $ at $ \mathrm{D} $. Show that(i) $ \mathrm{D} $ is the mid-point of $ \mathrm{AC} $(ii) $ \mathrm{MD} \perp \mathrm{AC} $(iii) $ \mathrm{CM}=\mathrm{MA}=\frac{1}{2} \mathrm{AB} $
Given:
\( \mathrm{ABC} \) is a triangle right angled at \( \mathrm{C} \). A line through the mid-point \( \mathrm{M} \) of hypotenuse \( \mathrm{AB} \) and parallel to \( \mathrm{BC} \) intersects \( \mathrm{AC} \) at \( \mathrm{D} \).
To do: We have to show that
(i) \( \mathrm{D} \) is the mid-point of \( \mathrm{AC} \) (ii) \( \mathrm{MD} \perp \mathrm{AC} \) (iii) \( \mathrm{CM}=\mathrm{MA}=\frac{1}{2} \mathrm{AB} \)
Solution:
\( \mathrm{ABC} \) is a triangle right angled at \( \mathrm{C} \).
This implies,
$\angle C=90^o$
$M$ is the mid-point of hypotenuse $AB$.
$DM \| BC$
(i) In $\triangle \mathrm{ABC}$,
$\mathrm{BC} \| \mathrm{MD}$
$\mathrm{M}$ is the mid-point of $\mathrm{AB}$.
Therefore, by converse of mid-point theorem, we get,
$D$ is the mid-point of $AC$.
(ii) $MD \| B C$ and $C D$ is the transversal.
This implies,
$\angle A D M=\angle A C B=90^{\circ}$ (Corresponding angles are equal)
$\Rightarrow \mathrm{MD} \perp \mathrm{AC}$
(iii) In $\triangle A D M$ and $\triangle C D M$,
$\mathrm{DM}=\mathrm{DM}$ (Common side)
$AD=C D$ ($D$ is the mid-point of $AC$)
$\angle \mathrm{ADM}=\angle \mathrm{MDC} = 90^{\circ}$
Therefore, by SAS congruency, we get,
$\triangle \mathrm{ADM}=\triangle \mathrm{CDM}$
This implies,
$\mathrm{CM}=\mathrm{AM}$ (CPCT)......(i)
$M$ is the mid-point of $AB$.
$\mathrm{AM}=\mathrm{BM}=\frac{1}{2} \mathrm{AB}$.......(ii)
From (i) and (ii), we get,
$\mathrm{CM}=\mathrm{AM}=\frac{1}{2} \mathrm{AB}$
Hence proved.
Related Articles In right triangle \( \mathrm{ABC} \), right angled at \( \mathrm{C}, \mathrm{M} \) is the mid-point of hypotenuse \( \mathrm{AB} \). \( \mathrm{C} \) is joined to \( \mathrm{M} \) and produced to a point \( \mathrm{D} \) such that \( \mathrm{DM}=\mathrm{CM} \). Point \( \mathrm{D} \) is joined to point \( \mathrm{B} \) (see Fig. 7.23). Show that:(i) \( \triangle \mathrm{AMC} \equiv \triangle \mathrm{BMD} \)(ii) \( \angle \mathrm{DBC} \) is a right angle.(iii) \( \triangle \mathrm{DBC} \equiv \triangle \mathrm{ACB} \)(iv) \( \mathrm{CM}=\frac{1}{2} \mathrm{AB} \)"
If \( \mathrm{B} \) is the mid point of \( \overline{\mathrm{AC}} \) and \( \mathrm{C} \) is the mid point of \( \overline{\mathrm{BD}} \), where \( \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D} \) lie on a straight line, say why \( \mathrm{AB}=\mathrm{CD} \)?
In \( \triangle \mathrm{ABC} \). the bisector of \( \angle \mathrm{A} \) intersects \( \mathrm{BC} \) at \( \mathrm{D} \). If \( \mathrm{AB}=8, \mathrm{AC}=10 \) and \( \mathrm{BC}=9 \), find \( \mathrm{BD} \) and \( \mathrm{DC} \).
\( \mathrm{ABC} \) is an isosceles triangle with \( \mathrm{AB}=\mathrm{AC} \). Draw \( \mathrm{AP} \perp \mathrm{BC} \) to show that \( \angle \mathrm{B}=\angle \mathrm{C} \).
In the given figure, $AD$ is a median of a triangle $ABC$ and $AM \perp BC$. Prove that(i)$\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{BC} \times \mathrm{DM}+(\frac{\mathrm{BC}}{2})^{2}$(ii) $\mathrm{AB}^{2}=\mathrm{AD}^{2}-\mathrm{BC} \times \mathrm{DM}+(\frac{\mathrm{BC}}{2})^2$(iii) $\mathrm{AC}^{2}+\mathrm{AB}^{2}=2 \mathrm{AD}^{2}+\frac{1}{2} \mathrm{BC}^{2}$"
\( \mathrm{ABCD} \) is a trapezium in which \( \mathrm{AB} \| \mathrm{DC}, \mathrm{BD} \) is a diagonal and \( \mathrm{E} \) is the mid-point of \( \mathrm{AD} \). A line is drawn through E parallel to \( \mathrm{AB} \) intersecting \( \mathrm{BC} \) at \( \mathrm{F} \) (see below figure). Show that \( \mathrm{F} \) is the mid-point of \( \mathrm{BC} \)."\n
In figure below, line segment \( \mathrm{DF} \) intersect the side \( \mathrm{AC} \) of a triangle \( \mathrm{ABC} \) at the point \( \mathrm{E} \) such that \( \mathrm{E} \) is the mid-point of \( \mathrm{CA} \) and \( \angle \mathrm{AEF}=\angle \mathrm{AFE} \). Prove that \( \frac{\mathrm{BD}}{\mathrm{CD}}=\frac{\mathrm{BF}}{\mathrm{CE}} \)[Hint: Take point \( \mathrm{G} \) on \( \mathrm{AB} \) such that \( \mathrm{CG} \| \mathrm{DF} \).]"
\( \mathrm{ABCD} \) is a trapezium in which \( \mathrm{AB} \| \mathrm{CD} \) and \( \mathrm{AD}=\mathrm{BC} \) (see below figure). Show that(i) \( \angle \mathrm{A}=\angle \mathrm{B} \)(ii) \( \angle \mathrm{C}=\angle \mathrm{D} \)(iii) \( \triangle \mathrm{ABC} \equiv \triangle \mathrm{BAD} \)(iv) diagonal \( \mathrm{AC}= \) diagonal \( \mathrm{BD} \)[Hint: Extend \( \mathrm{AB} \) and draw a line through \( \mathrm{C} \) parallel to \( \mathrm{DA} \) intersecting \( \mathrm{AB} \) produced at E.]"\n
\( \mathrm{ABCD} \) is a trapezium with \( \mathrm{AB} \| \mathrm{DC} \). A line parallel to \( \mathrm{AC} \) intersects \( \mathrm{AB} \) at \( \mathrm{X} \) and \( \mathrm{BC} \) at Y. Prove that ar \( (\mathrm{ADX})=\operatorname{ar}(\mathrm{ACY}) \).[Hint: Join CX.]
In right triangle ABC, right angledat C. M is the mid-point of hypotenuse AB. C is joined to \( \mathrm{M} \) and produced to a point \( \mathrm{D} \) such that \( \mathrm{DM}=\mathrm{CM} \). Point \( \mathrm{D} \) is joined to point \( \mathrm{B} \). Show that:(i) \( \triangle A M C \cong \triangle B M D \)(ii) \( \angle \mathrm{DBC} \) is a right angle(iii) \( \triangle \mathrm{DBC} \cong \triangle \mathrm{ACB} \)(iv) $CM=\frac{1}{2}AB$"\n
\( \mathrm{XY} \) is a line parallel to side \( \mathrm{BC} \) of a triangle \( \mathrm{ABC} \). If \( \mathrm{BE} \| \mathrm{AC} \) and \( \mathrm{CF} \| \mathrm{AB} \) meet \( \mathrm{XY} \) at \( \mathrm{E} \) and \( F \) respectively, show that \( \operatorname{ar}(\mathrm{ABE})=\operatorname{ar}(\mathrm{ACF}) \).
\( \mathrm{O} \) is the point of intersection of the diagonals \( \mathrm{AC} \) and \( \mathrm{BD} \) of a trapezium \( \mathrm{ABCD} \) with \( \mathrm{AB} \| \mathrm{DC} \). Through \( \mathrm{O} \), a line segment \( \mathrm{PQ} \) is drawn parallel to \( \mathrm{AB} \) meeting \( \mathrm{AD} \) in \( \mathrm{P} \) and \( \mathrm{BC} \) in \( \mathrm{Q} \). Prove that \( \mathrm{PO}=\mathrm{QO} \).
\( \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR} . \quad \) If \( \quad \mathrm{AB}+\mathrm{BC}=12 \mathrm{~cm} \) \( \mathrm{PQ}+\mathrm{QR}=15 \mathrm{~cm} \) and \( \mathrm{AC}=8 \mathrm{~cm} \), find \( \mathrm{PR} \).
In \( \triangle \mathrm{ABC}, \mathrm{AD} \) is a median. If \( \mathrm{AB}=18 \mathrm{~cm} \). \( \mathrm{AC}=14 \mathrm{~cm} \) and \( \mathrm{AD}=14 \mathrm{~cm} \), find the perimeter of \( \triangle \mathrm{ABC} \).
Construct a triangle \( \mathrm{ABC} \) in which \( \mathrm{BC}=7 \mathrm{~cm}, \angle \mathrm{B}=75^{\circ} \) and \( \mathrm{AB}+\mathrm{AC}=13 \mathrm{~cm} \).
Kickstart Your Career
Get certified by completing the course
Get Started