" ">

In figure below, if $ \angle \mathrm{D}=\angle \mathrm{C} $, then is it true that $ \triangle \mathrm{ADE} \sim \triangle \mathrm{ACB} ? $ Why?
"


Given:

\( \angle \mathrm{D}=\angle \mathrm{C} \)

To do:

We have to find whether \( \triangle \mathrm{ADE} \sim \triangle \mathrm{ACB} \).

Solution:

In $\triangle ADE$ and $\triangle ACB$,

$\angle A = \angle A$           (Common)

$\angle D = \angle C$              (Given)

Therefore, by AA similarity,

$\triangle ADE \sim \triangle ACB$

Updated on: 10-Oct-2022

32 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements