- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
In right triangle $ \mathrm{ABC} $, right angled at $ \mathrm{C}, \mathrm{M} $ is the mid-point of hypotenuse $ \mathrm{AB} $. $ \mathrm{C} $ is joined to $ \mathrm{M} $ and produced to a point $ \mathrm{D} $ such that $ \mathrm{DM}=\mathrm{CM} $. Point $ \mathrm{D} $ is joined to point $ \mathrm{B} $ (see Fig. 7.23). Show that:
(i) $ \triangle \mathrm{AMC} \equiv \triangle \mathrm{BMD} $
(ii) $ \angle \mathrm{DBC} $ is a right angle.
(iii) $ \triangle \mathrm{DBC} \equiv \triangle \mathrm{ACB} $
(iv) $ \mathrm{CM}=\frac{1}{2} \mathrm{AB} $
"
Given:
In right triangle $ABC$, right angled at $C$, $M$ is the mid-point of hypotenuse $AB$. $C$ is joined to $M$ and produced to a point $D$ such that $DM=CM$. Point $D$ is joined to point $B$.
To do:
We have to show the given questions.
Solution:
(i) Let us consider $\triangle AMC$ and $\triangle BMD$,
We know that,
According to Rule of Side-Angle-Side Congruence:
Triangles are said to be congruent if any pair of corresponding sides and their included angles are equal in both triangles.
Given,
$CM=DM$ and
$M$ is the midpoint of the hypotenuse $AB$
This implies,
$AM=BM$
We also know that,
The vertically opposite angles are always equal,
This implies,
$\angle CMA=\angle DMB$
Therefore,
By SAS congruence,
$\triangle AMC \cong \triangle BMD$.
(ii) We also know,
From corresponding parts of congruent triangles: If two triangles are congruent, all of their corresponding angles and sides must be equal.
This implies,
$\angle ACM=\angle BDM$
We know that,
if the alternate interior angles were equal, then the two lines were parallel.
This implies,
$AC \parallel BD$
We also know that, the sum of the interior angles is equal to $180^o$
This implies,
$\angle ACB+\angle DBC=180^o$
$90^o+\angle DBC=180^o$ (given, $\triangle ABC$ is right angled at $c$)
This implies,
$\angle DBC=90^o$
(iii) Let us consider $\triangle DBC$ and $\triangle ACB$
We know that,
According to Rule of Side-Angle-Side Congruence:
Triangles are said to be congruent if any pair of corresponding sides and their included angles are equal in both triangles.
$BC=CB$ (common side)
Since,$\angle ACB$ and $DBC$ are right angles to each other we get,
$\angle ACB=\angle DBC$
We also know,
From corresponding parts of congruent triangles: If two triangles are congruent, all of their corresponding sides must be equal.
Therefore,
$DB=AC$.
Therefore,
$\triangle DBC \cong ACB$.
(iv) Since $\triangle DBC \cong ACB$
We get,
$DM=AB$
We also have $M$ as the mid point
This implies,
$DM=CM=AM=BM$
Therefore,
$DM+CM=BM+AM$
$CM+CM=AB$
This implies,
$CM=\frac{1}{2}AB$.
- Related Articles
- In right triangle ABC, right angledat C. M is the mid-point of hypotenuse AB. C is joined to \( \mathrm{M} \) and produced to a point \( \mathrm{D} \) such that \( \mathrm{DM}=\mathrm{CM} \). Point \( \mathrm{D} \) is joined to point \( \mathrm{B} \). Show that:(i) \( \triangle A M C \cong \triangle B M D \)(ii) \( \angle \mathrm{DBC} \) is a right angle(iii) \( \triangle \mathrm{DBC} \cong \triangle \mathrm{ACB} \)(iv) $CM=\frac{1}{2}AB$"\n
- \( \mathrm{ABC} \) is a triangle right angled at \( \mathrm{C} \). A line through the mid-point \( \mathrm{M} \) of hypotenuse \( \mathrm{AB} \) and parallel to \( \mathrm{BC} \) intersects \( \mathrm{AC} \) at \( \mathrm{D} \). Show that(i) \( \mathrm{D} \) is the mid-point of \( \mathrm{AC} \)(ii) \( \mathrm{MD} \perp \mathrm{AC} \)(iii) \( \mathrm{CM}=\mathrm{MA}=\frac{1}{2} \mathrm{AB} \)
- \( \triangle \mathrm{ABC} \) is an isosceles triangle in which \( \mathrm{AB}=\mathrm{AC} \). Side \( \mathrm{BA} \) is produced to \( \mathrm{D} \) such that \( \mathrm{AD}=\mathrm{AB} \) (see Fig. 7.34). Show that \( \angle \mathrm{BCD} \) is a right angle."\n
- \( \mathrm{ABCD} \) is a trapezium in which \( \mathrm{AB} \| \mathrm{CD} \) and \( \mathrm{AD}=\mathrm{BC} \) (see below figure). Show that(i) \( \angle \mathrm{A}=\angle \mathrm{B} \)(ii) \( \angle \mathrm{C}=\angle \mathrm{D} \)(iii) \( \triangle \mathrm{ABC} \equiv \triangle \mathrm{BAD} \)(iv) diagonal \( \mathrm{AC}= \) diagonal \( \mathrm{BD} \)[Hint: Extend \( \mathrm{AB} \) and draw a line through \( \mathrm{C} \) parallel to \( \mathrm{DA} \) intersecting \( \mathrm{AB} \) produced at E.]"\n
- \( \mathrm{AB} \) is a line segment and \( \mathrm{P} \) is its mid-point. \( \mathrm{D} \) and \( \mathrm{E} \) are points on the same side of \( \mathrm{AB} \) such that \( \angle \mathrm{BAD}=\angle \mathrm{ABE} \) and \( \angle \mathrm{EPA}=\angle \mathrm{DPB} \) (see Fig. 7.22). Show that(i) \( \triangle \mathrm{DAP} \cong \triangle \mathrm{EBP} \)(ii) \( \mathrm{AD}=\mathrm{BE} \)"\n
- In \( \triangle \mathrm{ABC} \) and \( \triangle \mathrm{DEF}, \mathrm{AB}=\mathrm{DE}, \mathrm{AB} \| \mathrm{DE}, \mathrm{BC}=\mathrm{EF} \) and \( \mathrm{BC} \| EF \). Vertices \( \mathrm{A}, \mathrm{B} \) and \( \mathrm{C} \) are joined to vertices D, E and F respectively (see below figure).Show that(i) quadrilateral ABED is a parallelogram(ii) quadrilateral \( \mathrm{BEFC} \) is a parallelogram(iii) \( \mathrm{AD} \| \mathrm{CF} \) and \( \mathrm{AD}=\mathrm{CF} \)(iv) quadrilateral ACFD is a parallelogram(v) \( \mathrm{AC}=\mathrm{DF} \)(vi) \( \triangle \mathrm{ABC} \equiv \triangle \mathrm{DEF} \)."
- \( \mathrm{ABC} \) is a right angled triangle in which \( \angle \mathrm{A}=90^{\circ} \) and \( \mathrm{AB}=\mathrm{AC} \). Find \( \angle \mathrm{B} \) and \( \angle \mathrm{C} \).
- Name the types of following triangles:(a) Triangle with lengths of sides \( 7 \mathrm{~cm}, 8 \mathrm{~cm} \) and \( 9 \mathrm{~cm} \).(b) \( \triangle \mathrm{ABC} \) with \( \mathrm{AB}=8.7 \mathrm{~cm}, \mathrm{AC}=7 \mathrm{~cm} \) and \( \mathrm{BC}=6 \mathrm{~cm} \).(c) \( \triangle \mathrm{PQR} \) such that \( \mathrm{PQ}=\mathrm{QR}=\mathrm{PR}=5 \mathrm{~cm} \).(d) \( \triangle \mathrm{DEF} \) with \( \mathrm{m} \angle \mathrm{D}=90^{\circ} \)(e) \( \triangle \mathrm{XYZ} \) with \( \mathrm{m} \angle \mathrm{Y}=90^{\circ} \) and \( \mathrm{XY}=\mathrm{YZ} \).(f) \( \Delta \mathrm{LMN} \) with \( \mathrm{m} \angle \mathrm{L}=30^{\circ}, \mathrm{m} \angle \mathrm{M}=70^{\circ} \) and \( \mathrm{m} \angle \mathrm{N}=80^{\circ} \).
- In parallelogram \( \mathrm{ABCD} \), two points \( \mathrm{P} \) and \( \mathrm{Q} \) are taken on diagonal \( \mathrm{BD} \) such that \( \mathrm{DP}=\mathrm{BQ} \) (see below figure). Show that:(i) \( \triangle \mathrm{APD} \equiv \triangle \mathrm{CQB} \)(ii) \( \mathrm{AP}=\mathrm{CQ} \)(iii) \( \triangle \mathrm{AQB} \equiv \triangle \mathrm{CPD} \)(iv) \( \mathrm{AQ}=\mathrm{CP} \)(v) \( \mathrm{APCQ} \) is a parallelogram"\n
- In figure below, line segment \( \mathrm{DF} \) intersect the side \( \mathrm{AC} \) of a triangle \( \mathrm{ABC} \) at the point \( \mathrm{E} \) such that \( \mathrm{E} \) is the mid-point of \( \mathrm{CA} \) and \( \angle \mathrm{AEF}=\angle \mathrm{AFE} \). Prove that \( \frac{\mathrm{BD}}{\mathrm{CD}}=\frac{\mathrm{BF}}{\mathrm{CE}} \)[Hint: Take point \( \mathrm{G} \) on \( \mathrm{AB} \) such that \( \mathrm{CG} \| \mathrm{DF} \).]"
- Two sides \( \mathrm{AB} \) and \( \mathrm{BC} \) and median \( \mathrm{AM} \) of one triangle \( \mathrm{ABC} \) are respectively equal to sides \( \mathrm{PQ} \) and \( \mathrm{QR} \) and median \( \mathrm{PN} \) of \( \triangle \mathrm{PQR} \) (see Fig. 7.40). Show that:(i) \( \triangle \mathrm{ABM} \equiv \triangle \mathrm{PQN} \)(ii) \( \triangle \mathrm{ABC} \cong \triangle \mathrm{PQR} \)"\n
- \( \mathrm{ABC} \) is an isosceles triangle with \( \mathrm{AB}=\mathrm{AC} \). Draw \( \mathrm{AP} \perp \mathrm{BC} \) to show that \( \angle \mathrm{B}=\angle \mathrm{C} \).
- \( \triangle \mathrm{ABC} \) and \( \triangle \mathrm{DBC} \) are two isosceles triangles on the same base \( B C \) and vertices \( A \) and \( D \) are on the same side of \( \mathrm{BC} \) (see Fig. 7.39). If \( \mathrm{AD} \) is extended to intersect \( \mathrm{BC} \) at \( \mathrm{P} \), show that(i) \( \triangle \mathrm{ABD} \equiv \triangle \mathrm{ACD} \)(ii) \( \triangle \mathrm{ABP} \cong \triangle \mathrm{ACP} \)(iii) \( \mathrm{AP} \) bisects \( \angle \mathrm{A} \) as well as \( \angle \mathrm{D} \).(iv) AP is the perpendicular bisector of \( \mathrm{BC} \)."
- \( \mathrm{ABC} \) is a triangle in which altitudes \( \mathrm{BE} \) and \( \mathrm{CF} \) to sides \( \mathrm{AC} \) and \( \mathrm{AB} \) are equal (see Fig. 7.32). Show that(i) \( \triangle \mathrm{ABE} \cong \triangle \mathrm{ACF} \)(ii) \( \mathrm{AB}=\mathrm{AC} \), i.e., \( \mathrm{ABC} \) is an isosceles triangle."\n
- In \( \triangle \mathrm{ABC}, \mathrm{AD} \) is a median. If \( \mathrm{AB}=18 \mathrm{~cm} \). \( \mathrm{AC}=14 \mathrm{~cm} \) and \( \mathrm{AD}=14 \mathrm{~cm} \), find the perimeter of \( \triangle \mathrm{ABC} \).
