$ \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR} $. If $ 2 \angle \mathrm{P}=3 \angle \mathrm{Q} $ and $ \angle C=100^{\circ} $, find $ \angle B $.
Given:
\( \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR} \).
\( 2 \angle \mathrm{P}=3 \angle \mathrm{Q} \) and \( \angle C=100^{\circ} \).
To do:
We have to find \( \angle B \).
Solution:
$△ABC \sim △PQR$
When two triangles are similar their corresponding angles are equal and corresponding angles are equal and corresponding sides are in proportion.
Therefore,
$\angle A=\angle P$
$\angle B=\angle Q$
$\angle C=\angle R=100^o$
$2\angle P=3\angle Q$
$\angle P=\frac{3}{2}\angle Q$
This implies,
$\angle A=\angle P=\frac{3}{2}\angle Q$
$=\frac{3}{2}\angle B$
Sum of the angles in a triangle is $180^o$.
Therefore,
$\angle A+\angle B+\angle C=180^o$
$\frac{3}{2}\angle B+\angle B+100^o=180^o$
$\frac{3+2}{2}\angle B=180^o-100^o$
$\frac{5}{2}\angle B=80^o$
$\angle B=\frac{2}{5}\times80^o$
$=32^o$
Hence, $\angle B=32^o$.
- Related Articles
- \( \triangle \mathrm{ABC} \sim \triangle \mathrm{QPR} . \) If \( \angle \mathrm{A}+\angle \mathrm{B}=130^{\circ} \) and \( \angle B+\angle C=125^{\circ} \), find \( \angle Q \).
- In triangles \( \mathrm{PQR} \) and \( \mathrm{MST}, \angle \mathrm{P}=55^{\circ}, \angle \mathrm{Q}=25^{\circ}, \angle \mathrm{M}=100^{\circ} \) and \( \angle \mathrm{S}=25^{\circ} \). Is \( \triangle \mathrm{QPR} \sim \triangle \mathrm{TSM} \) ? Why?
- In \( \triangle \mathrm{PQR}, \quad \angle \mathrm{P}=\angle \mathrm{Q}+\angle \mathrm{R}, \mathrm{PQ}=7 \) and \( \mathrm{QR}=25 \). Find the perimeter of \( \triangle \mathrm{PQR} \).
- \( \mathrm{ABC} \) is a right angled triangle in which \( \angle \mathrm{A}=90^{\circ} \) and \( \mathrm{AB}=\mathrm{AC} \). Find \( \angle \mathrm{B} \) and \( \angle \mathrm{C} \).
- 10. Construct \( \triangle \mathrm{PQR} \) with \( \mathrm{PQ}=4.5 \mathrm{~cm}, \angle \mathrm{P}=60^{\circ} \) and \( \mathrm{PR}=4.5 \mathrm{~cm} . \) Measure \( \angle \mathrm{Q} \) and \( \angle \mathrm{R} \). What type of a triangle is it?
- It is given that \( \triangle \mathrm{DEF} \sim \triangle \mathrm{RPQ} \). Is it true to say that \( \angle \mathrm{D}=\angle \mathrm{R} \) and \( \angle \mathrm{F}=\angle \mathrm{P} \) ? Why?
- In \( \triangle \mathrm{ABC}, \angle \mathrm{A}=\angle \mathrm{B}+\angle \mathrm{C} \) and \( \mathrm{AM} \) is an altitude. If \( \mathrm{AM}=\sqrt{12} \) and \( \mathrm{BC}=8 \), find BM.
- Choose the correct answer from the given four options:It is given that \( \triangle \mathrm{ABC} \sim \triangle \mathrm{DFE}, \angle \mathrm{A}=30^{\circ}, \angle \mathrm{C}=50^{\circ}, \mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=8 \mathrm{~cm} \) and \( D F=7.5 \mathrm{~cm} \). Then, the following is true:(A) \( \mathrm{DE}=12 \mathrm{~cm}, \angle \mathrm{F}=50^{\circ} \)(B) \( \mathrm{DE}=12 \mathrm{~cm}, \angle \mathrm{F}=100^{\circ} \)(C) \( \mathrm{EF}=12 \mathrm{~cm}, \angle \mathrm{D}=100^{\circ} \)(D) \( \mathrm{EF}=12 \mathrm{~cm}, \angle \mathrm{D}=30^{\circ} \)
- In figure below, if \( \angle 1=\angle 2 \) and \( \triangle \mathrm{NSQ} \cong \triangle \mathrm{MTR} \), then prove that \( \triangle \mathrm{PTS} \sim \triangle \mathrm{PRQ} . \)"
- In Fig. \( 6.40, \angle \mathrm{X}=62^{\circ}, \angle \mathrm{XYZ}=54^{\circ} \). If \( \mathrm{YO} \) and \( Z \mathrm{O} \) are the bisectors of \( \angle \mathrm{XYZ} \) and \( \angle \mathrm{XZY} \) respectively of \( \triangle \mathrm{XYZ} \) find \( \angle \mathrm{OZY} \) and \( \angle \mathrm{YOZ} \)."\n
- In \( \triangle \mathrm{ABC}, \angle \mathrm{C}=90^{\circ}, \mathrm{AB}=12.5 \) and \( \mathrm{BC}=12 \). Find \( \mathrm{AC} \).
- In figure below, if \( \angle \mathrm{D}=\angle \mathrm{C} \), then is it true that \( \triangle \mathrm{ADE} \sim \triangle \mathrm{ACB} ? \) Why?"
- Construct a triangle \( \mathrm{PQR} \) in which \( \mathrm{QR}=6 \mathrm{~cm}, \angle \mathrm{Q}=60^{\circ} \) and \( \mathrm{PR}-\mathrm{PQ}=2 \mathrm{~cm} \).
- In Fig. 6.39, sides \( \mathrm{QP} \) and \( \mathrm{RQ} \) of \( \triangle \mathrm{PQR} \) are produced to points \( \mathrm{S} \) and T respectively. If \( \angle \mathrm{SPR}=135^{\circ} \) and \( \angle \mathrm{PQT}=110^{\circ} \), find \( \angle \mathrm{PRQ} \)."\n
- In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \). If \( \mathrm{AC}-\mathrm{BC}=4 \) and \( \mathrm{BC}-\mathrm{AB}=4 \), find all the three sides of \( \triangle \mathrm{ABC} \).
Kickstart Your Career
Get certified by completing the course
Get Started