- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $(1, 2), (4, y), (x, 6)$ and $(3, 5)$ are the vertices of a parallelogram taken in order, find $x$ and $y$.
The points $(1, 2), (4, y), (x, 6)$ and $(3, 5)$ are the vertices of a parallelogram taken in order.
To do:
We have to find the values of $x$ and $y$.
Solution:
Let the vertices of the parallelogram be $A(1, 2), B(4, y), C(x, 6)$ and $D(3, 5)$ and let the diagonals $AC$ and $BD$ bisect each other at $O$.
$\mathrm{O}$ is the mid-point of $\mathrm{AC}$.
This implies, using mid-point formula,
The coordinates of $\mathrm{O}=(\frac{x+1}{2}, \frac{6+2}{2})$
$=(\frac{x+1}{2}, 4)$
$\mathrm{O}$ is also the mid-point of $\mathrm{BD}$.
This implies,
The coordinates of $\mathrm{O}=(\frac{4+3}{2}, \frac{y+5}{2})$
$=(\frac{7}{2}, \frac{y+5}{2})$
Therefore,
$\frac{x+1}{2}=\frac{7}{2}$ and $4=\frac{y+5}{2}$
$\Rightarrow x+1=7$ and $4(2)=y+5$
$\Rightarrow x=7-1=6$ and $y=8-5=3$
The values of $x$ and $y$ are $6$ and $3$ respectively.
- Related Articles
- Find $25 x^{2}+16 y^{2}$, if $5 x+4 y=8$ and $x y=1$.
- If the points $(-2, -1), (1, 0), (x, 3)$ and $(1, y)$ form a parallelogram, find the values of $x$ and $y$.
- If X = {1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9} and Y = {3 , 6 , 9 , 12 , 15 , 18} , find $(X - Y)$ and $(Y -X)$ and illustrate them in Venn diagram.
- If $x+y=5$ and $xy=6$ then find $x^3+y^3$.
- Solve the following pairs of equations by reducing them to a pair of linear equations:(i) \( \frac{1}{2 x}+\frac{1}{3 y}=2 \)\( \frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6} \)(ii) \( \frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 \)\( \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1 \)(iii) \( \frac{4}{x}+3 y=14 \)\( \frac{3}{x}-4 y=23 \)(iv) \( \frac{5}{x-1}+\frac{1}{y-2}=2 \)\( \frac{6}{x-1}-\frac{3}{y-2}=1 \)(v) \( \frac{7 x-2 y}{x y}=5 \)\( \frac{8 x+7 y}{x y}=15 \),b>(vi) \( 6 x+3 y=6 x y \)\( 2 x+4 y=5 x y \)4(vii) \( \frac{10}{x+y}+\frac{2}{x-y}=4 \)\( \frac{15}{x+y}-\frac{5}{x-y}=-2 \)(viii) \( \frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4} \)\( \frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=\frac{-1}{8} \).
- If \( 2 x+y=23 \) and \( 4 x-y=19 \), find the values of \( 5 y-2 x \) and \( \frac{y}{x}-2 \).
- Add the following algebraic expressions.a) \( x+5 \) and \( x+3 \)b) \( 3 x+4 \) and \( 4 x+9 \)c) \( 5 y-2 \) and \( 2 y+7 \) d) \( 8 y-3 \) and \( 5 y-6 \)
- \Find $(x +y) \div (x - y)$. if,(i) \( x=\frac{2}{3}, y=\frac{3}{2} \)(ii) \( x=\frac{2}{5}, y=\frac{1}{2} \)(iii) \( x=\frac{5}{4}, y=\frac{-1}{3} \)(iv) \( x=\frac{2}{7}, y=\frac{4}{3} \)(v) \( x=\frac{1}{4}, y=\frac{3}{2} \)
- A pair of linear equations which has a unique solution \( x=2, y=-3 \) is(A) \( x+y=-1 \)\( 2 x-3 y=-5 \)(B) \( 2 x+5 y=-11 \)\( 4 x+10 y=-22 \)(C) \( 2 x-y=1 \)\( 3 x+2 y=0 \)(D) \( x-4 y-14=0 \)\( 5 x-y-13=0 \)
- If \( x=a, y=b \) is the solution of the equations \( x-y=2 \) and \( x+y=4 \), then the values of \( a \) and \( b \) are, respectively(A) 3 and 5(B) 5 and 3(C) 3 and 1,b>(D) \( -1 \) and \( -3 \)
- If $x=1,\ y=2$ and $z=5$, find the value of $x^{2}+y^{2}+z^{2}$.
- Given that $x=-2 $and $ y=4 $ evaluate each of the following expressions.a) $ 5 y-4 x $b) $\frac{1}{x}-y+3$
- 1. Factorize the expression \( 3 x y - 2 + 3 y - 2 x \)A) \( (x+1),(3 y-2) \)B) \( (x+1),(3 y+2) \)C) \( (x-1),(3 y-2) \)D) \( (x-1),(3 y+2) \)2. Factorize the expression \( \mathrm{xy}-\mathrm{x}-\mathrm{y}+1 \)A) \( (x-1),(y+1) \)B) \( (x+1),(y-1) \)C) \( (x-1),(y-1) \)D) \( (x+1),(y+1) \)
- If $x^2 + y^2 = 29$ and $xy = 2$, find the value of(i) $x + y$(ii) $x - y$(iii) $x^4 + y^4$
- Subtract:(i) $-5xy$ from $12xy$(ii) $2a^2$ from $-7a^2$(iii) \( 2 a-b \) from \( 3 a-5 b \)(iv) \( 2 x^{3}-4 x^{2}+3 x+5 \) from \( 4 x^{3}+x^{2}+x+6 \)(v) \( \frac{2}{3} y^{3}-\frac{2}{7} y^{2}-5 \) from \( \frac{1}{3} y^{3}+\frac{5}{7} y^{2}+y-2 \)(vi) \( \frac{3}{2} x-\frac{5}{4} y-\frac{7}{2} z \) from \( \frac{2}{3} x+\frac{3}{2} y-\frac{4}{3} z \)(vii) \( x^{2} y-\frac{4}{5} x y^{2}+\frac{4}{3} x y \) from \( \frac{2}{3} x^{2} y+\frac{3}{2} x y^{2}- \) \( \frac{1}{3} x y \)(viii) \( \frac{a b}{7}-\frac{35}{3} b c+\frac{6}{5} a c \) from \( \frac{3}{5} b c-\frac{4}{5} a c \)
