If $ \tan \theta=1 $ and $ \sin \phi =\frac{1}{\sqrt{2}}, $ then the value of $ \cos (\theta+\phi) $ is:
(a) -1
(b) 0
(c) 1
(d) $ \frac{\sqrt{3}}{2} $
Given:
\( \tan \theta=1 \) and \( \sin \phi =\frac{1}{\sqrt{2}} \).
To do:
We have to find the value of \( \cos (\theta+\phi) \).
Solution:
We know that,
$tan\ 45^o=1$ and $sin\ 45^o=\frac{1}{\sqrt{2}}$
\( \tan \theta=1 \)
This implies,
$\tan \theta=tan\ 45^o$
$\theta = 45^o$
\( \sin \phi =\frac{1}{\sqrt{2}} \)
$\sin \phi =sin\ 45^o$
$\phi = 45^o$
Therefore,
$cos\ (\theta+\phi) = cos\ (45^o+45^o)$
$=cos\ 90^o$
$=0$
Option (b) is the correct answer.
- Related Articles
- If \( \cot \theta=\frac{1}{\sqrt{3}} \), find the value of \( \frac{1-\cos ^{2} \theta}{2-\sin ^{2} \theta} \)
- If \( \sqrt{3} \tan \theta=1 \), then find the value of \( \sin ^{2} \theta-\cos ^{2} \theta \).
- If \( \sqrt{3} \tan \theta-1=0 \), find the value of \( \sin ^{2}-\cos ^{2} \theta \).
- If \( x=a \sec \theta \cos \phi, y=b \sec \theta \sin \phi \) and \( z=c \tan \theta \), show that \( \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1 \)
- Prove that:\( \sqrt{\frac{1+\sin \theta}{1-\sin \theta}}+\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}=2 \sec \theta \)
- If \( \sin \theta-\cos \theta=0 \), then the value of \( \left(\sin ^{4} \theta+\cos ^{4} \theta\right) \) is(A) 1(B) \( \frac{3}{4} \)(C) \( \frac{1}{2} \)(D) \( \frac{1}{4} \)
- If \( \cot \theta=\frac{1}{\sqrt{3}} \), show that \( \frac{1-\cos ^{2} \theta}{2-\sin ^{2} \theta}=\frac{3}{5} \)
- Prove that:\( \sqrt{\frac{1+\cos \theta}{1-\cos \theta}}+\sqrt{\frac{1-\cos \theta}{1+\cos \theta}}=2 \operatorname{cosec} \theta \)
- If \( 4 \tan \theta=3 \), then \( \left(\frac{4 \sin \theta-\cos \theta}{4 \sin \theta+\cos \theta}\right) \) is equal to(A) \( \frac{2}{3} \)(B) \( \frac{1}{3} \)(C) \( \frac{1}{2} \)(D) \( \frac{3}{4} \)
- If \( \cos \theta=\frac{3}{5} \), find the value of \( \frac{\sin \theta-\frac{1}{\tan \theta}}{2 \tan \theta} \)
- Prove the identity: $\sqrt{\frac{1+sin\theta}{1-sin\theta}}+\sqrt{\frac{1-sin\theta}{1+sin\theta}}=2sec\theta$.
- Prove the following identities:\( \left(\tan \theta+\frac{1}{\cos \theta}\right)^{2}+\left(\tan \theta-\frac{1}{\cos \theta}\right)^{2}=2\left(\frac{1+\sin ^{2} \theta}{1-\sin ^{2} \theta}\right) \)
- If \( \cos \theta=\frac{5}{13} \), find the value of \( \frac{\sin ^{2} \theta-\cos ^{2} \theta}{2 \sin \theta \cos \theta} \times \frac{1}{\tan ^{2} \theta} \)
- If \( \sin \theta=\frac{12}{13} \), find the value of \( \frac{\sin ^{2} \theta-\cos ^{2} \theta}{2 \sin \theta \cos \theta} \times \frac{1}{\tan ^{2} \theta} \)
- If $sin\theta +cos\theta=\sqrt{3}$, then prove that $tan\theta+cot\theta=1$.
Kickstart Your Career
Get certified by completing the course
Get Started