- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $tan\ θ = \frac{a}{b}$ , find the value of $\frac{cos\ θ+sin\ θ}{cos\ θ−sin\ θ}$.
Given:
$tan\ θ = \frac{a}{b}$.
To do:
We have to find the value of $\frac{cos\ θ+sin\ θ}{cos\ θ−sin\ θ}$.
Solution:
Let, in a triangle $ABC$ right-angled at $B$, $\ tan\ \theta = tan\ A = \frac{a}{b}$.
We know that,
In a right-angled triangle $ABC$ with right angle at $B$,
By Pythagoras theorem,
$AC^2=AB^2+BC^2$
By trigonometric ratios definitions,
$sin\ \theta=\frac{Opposite}{Hypotenuse}=\frac{BC}{AC}$
$cos\ \theta=\frac{Adjacent}{Hypotenuse}=\frac{AB}{AC}$
$tan\ \theta=\frac{Opposite}{Adjacent}=\frac{BC}{AB}$
Here,
$AC^2=AB^2+BC^2$
$\Rightarrow AC^2=(b)^2+(a)^2$
$\Rightarrow AC^2=b^2+a^2$
$\Rightarrow AC=\sqrt{a^2+b^2}$
Therefore,
$sin\ \theta=\frac{BC}{AC}=\frac{a}{\sqrt{a^2+b^2}}$
$cos\ \theta=\frac{AB}{AC}=\frac{b}{\sqrt{a^2+b^2}}$
This implies,$\frac{cos\ θ+sin\ θ}{cos\ θ−sin\ θ}= \frac{\frac{b}{\sqrt{a^{2} +b^{2}}} +\frac{a}{\sqrt{a^{2} +b^{2}}}}{\frac{b}{\sqrt{a^{2} +b^{2}}} -\frac{a}{\sqrt{a^{2} +b^{2}}}}$
$=\frac{\frac{b+a}{\sqrt{a^{2} +b^{2}}}}{\frac{b-a}{\sqrt{a^{2} +b^{2}}}}$
$=\frac{a+b}{b-a}$
The value of $\frac{cos\ θ+sin\ θ}{cos\ θ−sin\ θ}$ is $\frac{a+b}{b-a}$.