If $\frac{3}{a}=4$, then find the value of $a$.
Given: $\frac{3}{a}=4$.
To do: To find the value of $a$.
Solution:
Given $\frac{3}{a}=4$
$\Rightarrow \frac{3}{a}=\frac{4}{1}$
$\Rightarrow 3\times1=4\times a$ [On cross multiplication]
$\Rightarrow 4a=3$
$\Rightarrow a=\frac{3}{4}$
Therefore, $a=\frac{3}{4}$.
- Related Articles
- If $cos\ A = \frac{4}{5}$, then the value of $tan\ A$ is(A) $\frac{3}{5}$(B) $\frac{3}{4}$(C) $\frac{4}{3}$(D) $\frac{5}{3}$
- If \( a=2, b=3 \) and \( c=4, \) then find the value of \( 3 a-b+c \).
- If $\frac{x}{4}=\frac{3}{6}$, find the value of $x$.
- Find $a$ if $\frac{3}{a}=4$.
- If $\frac{4}{5}$ of a number exceeds its $\frac{3}{7}$ by $65$, then find the number.
- If $\frac{3}{4}(x-1)=x-3$, find the value of $x$.
- If the sum of fractions $\frac{3}{4}, \frac{a}{4}$ is equal to $\frac{1}{4}$ then the unknown numerator a is
- If \( x^{4}+\frac{1}{x^{4}}=119 \), find the value of \( x^{3}-\frac{1}{x^{3}} \).
- If $\frac{4}{5},\ a,\ 2$ are three consecutive terms of an A.P., then find the value of $a$.
- Find the value of $t$, if \( \frac{3 t-2}{4}-\frac{2 t+3}{3}=\frac{2}{3}-t \).
- If $\frac{a^{2b-3}\times (a^2)^{b+1}}{( a^4)^{-3}}=(a^3)^3\p(a^6)^{-3}$. Find the value of $2b$.
- Find the value of $\frac{x}{y}$ if $(\frac{3}{5})^{4}$ $\times$ $(\frac{15}{10})^{4}$=$(\frac{x}{y})^{4}$
- If $sin A =\frac{1}{2}$ , then find the value of $sin 3A$.
- If $( \frac{( 3 x-4)^{3}-( x+1)^{3}}{( 3 x-4)^{3}+( x+1)^{3}}=\frac{61}{189})$, find the value of $x$.
- If \( 1 \frac{1}{2} \times 2 \frac{2}{3} \times 3 \frac{3}{4} \times \ldots \times 199 \frac{199}{200}=\frac{1}{m}, \) then find the value of \( m \).
Kickstart Your Career
Get certified by completing the course
Get Started