If $sin A =\frac{1}{2}$ , then find the value of $sin 3A$.
Given :
The given is $sin A =\frac{1}{2}$.
To find :
We have to find the value of $sin 3A$.
Solution :
$sin A =\frac{1}{2}$
We know that $sin 30° = \frac{1}{2}$
$sin A = sin 30°$
$A =30°$
So, $sin 3A = sin 3(30°) = sin 90° = 1$
Therefore, the value of sin 3A is 1.
- Related Articles
- If \( \tan \theta=\frac{12}{5} \), find the value of \( \frac{1+\sin \theta}{1-\sin \theta} \)
- If \( \sin \theta=\frac{12}{13} \), find the value of \( \frac{\sin ^{2} \theta-\cos ^{2} \theta}{2 \sin \theta \cos \theta} \times \frac{1}{\tan ^{2} \theta} \)
- If \( \cos A=\frac{\sqrt{3}}{2} \), find the value of \( \frac{1}{\tan A}+\frac{\sin A}{1+\cos A} \)
- Prove the following trigonometric identities:\( \frac{(1+\sin \theta)^{2}+(1-\sin \theta)^{2}}{2 \cos ^{2} \theta}=\frac{1+\sin ^{2} \theta}{1-\sin ^{2} \theta} \)
- If \( \cot \theta=\frac{1}{\sqrt{3}} \), find the value of \( \frac{1-\cos ^{2} \theta}{2-\sin ^{2} \theta} \)
- Prove the following:$( i).\ ( \frac{\cot ^{2} A}{(\operatorname{cosec} A+1)^{2}}=\frac{1-\sin A}{1+\sin A})$$( ii).\ \frac{1+\sin A}{\cos A}+\frac{\cos A}{1+\sin A}=2 \sec A)$.
- If \( \sqrt{3} \tan \theta=1 \), then find the value of \( \sin ^{2} \theta-\cos ^{2} \theta \).
- If \( \cos \theta=\frac{5}{13} \), find the value of \( \frac{\sin ^{2} \theta-\cos ^{2} \theta}{2 \sin \theta \cos \theta} \times \frac{1}{\tan ^{2} \theta} \)
- Prove the following trigonometric identities:\( \frac{1}{1+\sin A}+\frac{1}{1-\sin A}=2 \sec ^{2} A \)
- If \( 2 \sin ^{2} \theta-\cos ^{2} \theta=2 \), then find the value of \( \theta \).
- If \( \tan \theta=\frac{12}{13} \), find the value of \( \frac{2 \sin \theta \cos \theta}{\cos ^{2} \theta-\sin ^{2} \theta} \)
- Prove that:\( \sqrt{\frac{1+\sin \theta}{1-\sin \theta}}+\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}=2 \sec \theta \)
- If \( \sin \mathrm{A}+\sin ^{2} \mathrm{~A}=1 \), then the value of the expression \( \left(\cos ^{2} \mathrm{~A}+\cos ^{4} \mathrm{~A}\right) \) is(A) 1(B) \( \frac{1}{2} \)(C) 2(D) 3
- If \( \sin \theta-\cos \theta=0 \), then the value of \( \left(\sin ^{4} \theta+\cos ^{4} \theta\right) \) is(A) 1(B) \( \frac{3}{4} \)(C) \( \frac{1}{2} \)(D) \( \frac{1}{4} \)
- If $sin\theta+sin^{2}\theta=1$, then evaluate $cos^{2}\theta+cos^{4}\theta$.
Kickstart Your Career
Get certified by completing the course
Get Started