- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $cos\ A = \frac{4}{5}$, then the value of $tan\ A$ is
(A) $\frac{3}{5}$
(B) $\frac{3}{4}$
(C) $\frac{4}{3}$
(D) $\frac{5}{3}$
Given:
$cos\ A = \frac{4}{5}$
To do:
We have to find the value of $tan\ A$.
Solution:
Let, in a triangle $ABC$ right-angled at $B$, $cos\ A=\frac{4}{5}$.
We know that,
In a right-angled triangle $ABC$ with right angle at $B$,
By Pythagoras theorem,
$AC^2=AB^2+BC^2$
By trigonometric ratios definitions,
$sin\ \theta=\frac{Opposite}{Hypotenuse}=\frac{BC}{AC}$
$cos\ \theta=\frac{Adjacent}{Hypotenuse}=\frac{AB}{AC}$
$sec\ \theta=\frac{Hypotenuse}{Adjacent}=\frac{AC}{AB}$
$tan\ \theta=\frac{Opposite}{Adjacent}=\frac{BC}{AB}$
Here,
$AC^2=AB^2+BC^2$
$\Rightarrow (5)^2=(4)^2+BC^2$
$\Rightarrow BC^2=25-16$
$\Rightarrow BC=\sqrt{9}=3$
Therefore,
$tan\ A=\frac{BC}{AB}=\frac{3}{4}$.
- Related Articles
- If \( \sec A=\frac{5}{4} \), verify that \( \frac{3 \sin A-4 \sin ^{3} A}{4 \cos ^{3} A-3 \cos A}=\frac{3 \tan A-\tan ^{3} A}{1-3 \tan ^{2} A} \)
- Solve(a) \( \frac{2}{3}+\frac{1}{7} \)(b) \( \frac{3}{10}+\frac{7}{15} \)(c) \( \frac{4}{9}+\frac{2}{7} \)(d) \( \frac{5}{7}+\frac{1}{3} \)(e) \( \frac{2}{5}+\frac{1}{6} \)(f) \( \frac{4}{5}+\frac{2}{3} \)(g) \( \frac{3}{4}-\frac{1}{3} \)(h) \( \frac{5}{6}-\frac{1}{3} \)(i) \( \frac{2}{3}+\frac{3}{4}+\frac{1}{2} \)(j) \( \frac{1}{2}+\frac{1}{3}+\frac{1}{6} \)(k) \( 1 \frac{1}{3}+3 \frac{2}{3} \)(l) \( 4 \frac{2}{3}+3 \frac{1}{4} \)(m) \( \frac{16}{5}-\frac{7}{5} \)(n) \( \frac{4}{3}-\frac{1}{2} \)
- Prove that:\( \frac{2^{\frac{1}{2}} \times 3^{\frac{1}{3}} \times 4^{\frac{1}{4}}}{10^{\frac{-1}{5}} \times 5^{\frac{3}{5}}} \p \frac{3^{\frac{4}{3}} \times 5^{\frac{-7}{5}}}{4^{\frac{-3}{5}} \times 6}=10 \)
- Take away:(i) \( \frac{6}{5} x^{2}-\frac{4}{5} x^{3}+\frac{5}{6}+\frac{3}{2} x \) from \( \frac{x^{3}}{3}-\frac{5}{2} x^{2}+ \) \( \frac{3}{5} x+\frac{1}{4} \)(ii) \( \frac{5 a^{2}}{2}+\frac{3 a^{3}}{2}+\frac{a}{3}-\frac{6}{5} \) from \( \frac{1}{3} a^{3}-\frac{3}{4} a^{2}- \) \( \frac{5}{2} \)(iii) \( \frac{7}{4} x^{3}+\frac{3}{5} x^{2}+\frac{1}{2} x+\frac{9}{2} \) from \( \frac{7}{2}-\frac{x}{3}- \) \( \frac{x^{2}}{5} \)(iv) \( \frac{y^{3}}{3}+\frac{7}{3} y^{2}+\frac{1}{2} y+\frac{1}{2} \) from \( \frac{1}{3}-\frac{5}{3} y^{2} \)(v) \( \frac{2}{3} a c-\frac{5}{7} a b+\frac{2}{3} b c \) from \( \frac{3}{2} a b-\frac{7}{4} a c- \) \( \frac{5}{6} b c \)
- Find:(i) $\frac{1}{4}$ of (a) $\frac{1}{4}$(b) $\frac{3}{5}$ (c) $\frac{4}{3}$(ii) $\frac{1}{7}$ of (a) $\frac{2}{9}$ (b) $\frac{6}{5}$ (c) $\frac{3}{10}$
- Solve the following:$(\frac{5}{3})^4 \times (\frac{5}{3})^4 \div (\frac{5}{3})^2$.
- If \( 4 \tan \theta=3 \), then \( \left(\frac{4 \sin \theta-\cos \theta}{4 \sin \theta+\cos \theta}\right) \) is equal to(A) \( \frac{2}{3} \)(B) \( \frac{1}{3} \)(C) \( \frac{1}{2} \)(D) \( \frac{3}{4} \)
- Which is greater in each of the following:$(i)$. $\frac{2}{3},\ \frac{5}{2}$$(ii)$. $-\frac{5}{6},\ -\frac{4}{3}$$(iii)$. $-\frac{3}{4},\ \frac{2}{-3}$$(iv)$. $-\frac{1}{4},\ \frac{1}{4}$$(v)$. $-3\frac{2}{7\ },\ -3\frac{4}{5}$
- Multiply and express as a mixed fraction:(a) $3\times5\frac{1}{5}$(b) $5\times6\frac{3}{4}$(c) $7\times2\frac{1}{4}$(d) $4\times6\frac{1}{3}$(e) $3\frac{1}{4}\times6$(f) $3\frac{2}{5}\times8$
- Solve the expression:$\frac{5}{3}+\frac{4}{3}-\frac{4}{2}+\frac{4}{2} $
- Draw number lines and locate the points on them:(a) \( \frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{4}{4} \)(b) \( \frac{1}{8}, \frac{2}{8}, \frac{3}{8}, \frac{7}{8} \)(c) \( \frac{2}{5}, \frac{3}{5}, \frac{8}{5}, \frac{4}{5} \)
- Simplify:(i) \( \frac{-3}{2}+\frac{5}{4}-\frac{7}{4} \)(ii) \( \frac{5}{3}-\frac{7}{6}+\frac{-2}{3} \)(iii) \( \frac{5}{4}-\frac{7}{6}-\frac{-2}{3} \)(iv) \( \frac{-2}{5}-\frac{-3}{10}-\frac{-4}{7} \)(v) \( \frac{5}{6}+\frac{-2}{5}-\frac{-2}{15} \)(vi) \( \frac{3}{8}-\frac{-2}{9}+\frac{-5}{36} \)
- Compare the fractions and put an appropriate sign.(a) \( \frac{3}{6} \square \frac{5}{6} \)(b) \( \frac{1}{7} \square \frac{1}{4} \)(c) \( \frac{4}{5} \square \frac{5}{5} \)(d) \( \frac{3}{5} \square \frac{3}{7} \)
- Solve the following:$3 \frac{2}{5} \div \frac{4}{5} of \frac{1}{5} + \frac{2}{3} of \frac{3}{4} - 1 \frac{35}{72}$.
- Complete the following:\( -\frac{4}{5} \times \frac{3}{7}+\frac{4}{5} \times \frac{3}{7} \)

Advertisements