- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $\frac{1}{b} \div \frac{b}{a} = \frac{a^2}{b}$, where a, b not equal to 0, then find the value of $\frac{\frac{a}{(\frac{1}{b})} - 1}{\frac{a}{b}}$.
Given :
$ \frac{1}{b} \div \frac{b}{a} =\frac{a^{2}}{b}$ , a, b not equal to 0.
To find :
We have to find the value of $\frac{\frac{a}{(\frac{1}{b})} - 1}{\frac{a}{b}}$.
Solution :
$\frac{1}{b} \times \frac{a}{b} =\frac{a^{2}}{b}$
$a\times b=a^{2} \times b^{2}$
$ab=a^{2} b^{2}$
$ab( ab-1) =0$
$ab=0\ or\ ab=1$
$ab \ not \ equal \ to \ 0 $ [since a not equal to 0 and b not equal to 0]
Therefore,
$ab = 1.$
$\frac{\frac{a}{1/b} -1}{\frac{a}{b}} \ =\ \frac{\frac{a-\left(\frac{1}{b}\right)}{1/b}}{a/b}$
$=\frac{a-\left(\frac{1}{b}\right)}{1/b} \times \frac{b}{a}$
$ =\ \frac{( ab-1) /b}{1/b} \times \frac{b}{a}$
$ =\ \frac{b( ab-1)}{a}$
$ =\frac{b( 1-1)}{a}$
$=0$
Therefore, the value of $\frac{\frac{a}{(\frac{1}{b})} - 1}{\frac{a}{b}}$ is $0$.