- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $ A $ and $ B $ are acute angles such that $ \tan A=\frac{1}{2}, \tan B=\frac{1}{3} $ and $ \tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B} $, find $ A+B $.
Given:
\( A \) and \( B \) are acute angles such that \( \tan A=\frac{1}{2}, \tan B=\frac{1}{3} \) and \( \tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B} \).
To do:
We have to find \( A+B \).
Solution:
\( \tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B} \)
This implies,
\( \tan (A+B)=\frac{\frac{1}{2}+\frac{1}{3}}{1-(\frac{1}{2})(\frac{1}{3})} \)
\( =\frac{\frac{1(3)+1(2)}{6}}{1-(\frac{1}{6})} \)
\( =\frac{\frac{3+2}{6}}{\frac{1(6)-1}{6}} \)
\( =\frac{5}{5} \)
\( =1 \)
\( \Rightarrow \tan (A+B)=\tan 45^{\circ} \) (Since $\tan 45^o=1$)
Therefore, the value of $A+B$ is $45^{\circ}$.
Advertisements