If a point $ C $ lies between two points $ A $ and $ B $ such that $ A C=B C $, then prove that $ \mathrm{AC}=\frac{1}{2} \mathrm{AB} $. Explain by drawing the figure.
Given:
A point $C$ lies between two points $A$ and $B$ such that $AC=BC$.
To do:
We have to prove that $AC=\frac{1}{2}AB$.
Solution:
Given,
$AC=BC$
By adding $AC$ on both sides we get,
$AC+AC=BC+AC$
This implies,
$2AC=BC+AC$ ($BC+AC$ coincides with $AB$)
According to Euclid's Axiom $4$
$BC+AC=AB$.
Therefore,
$2AC=AB$
This implies,
$AC=\frac{1}{2}AB$
Related Articles Draw any line segment, say \( \overline{\mathrm{AB}} \). Take any point \( \mathrm{C} \) lying in between \( \mathrm{A} \) and \( \mathrm{B} \). Measure the lengths of \( A B, B C \) and \( A C \). Is \( A B=A C+C B \) ?[Note : If \( A, B, C \) are any three points on a line such that \( A C+C B=A B \), then we can be sure that \( \mathrm{C} \) lies between \( \mathrm{A} \) and \( \mathrm{B} \).]
If the point \( P(2,1) \) lies on the line segment joining points \( A(4,2) \) and \( B(8,4) \), then(A) \( \mathrm{AP}=\frac{1}{3} \mathrm{AB} \)(B) \( \mathrm{AP}=\mathrm{PB} \)(C) \( \mathrm{PB}=\frac{1}{3} \mathrm{AB} \)(D) \( \mathrm{AP}=\frac{1}{2} \mathrm{AB} \)
If \( \mathrm{A}, \mathrm{B}, \mathrm{C} \) are three points on a line such that \( \mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=3 \mathrm{~cm} \) and \( \mathrm{AC}=8 \mathrm{~cm} \), which one of them lies between the other two?
In \( \Delta \mathrm{PQR}, \mathrm{PD} \perp \mathrm{QR} \) such that \( \mathrm{D} \) lies on \( \mathrm{QR} \). If \( \mathrm{PQ}=a, \mathrm{PR}=b, \mathrm{QD}=c \) and \( \mathrm{DR}=d \), prove that \( (a+b)(a-b)=(c+d)(c-d) \).
If A,B and C are three points on a line such that AC =8cm,CB=4cm and AB=12cm,which pointA,B or C lies between the other two?
If $V$ is the volume of a cuboid of dimensions $a, b, c$ and $S$ is its surface area, then prove that$\frac{1}{\mathrm{~V}}=\frac{2}{\mathrm{~S}}(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})$
If the points \( \mathrm{A}(1,2), \mathrm{O}(0,0) \) and \( \mathrm{C}(a, b) \) are collinear, then(A) \( a=b \)(B) \( a=2 b \)(C) \( 2 a=b \)(D) \( a=-b \)
Bisectors of angles \( \mathrm{A}, \mathrm{B} \) and \( \mathrm{C} \) of a triangle \( \mathrm{ABC} \) intersect its circumcircle at \( \mathrm{D}, \mathrm{E} \) and Frespectively. Prove that the angles of the triangle \( \mathrm{DEF} \) are \( 90^{\circ}-\frac{1}{2} \mathrm{~A}, 90^{\circ}-\frac{1}{2} \mathrm{~B} \) and \( 90^{\circ}-\frac{1}{2} \mathrm{C} \).
If \( \triangle \mathrm{ABC} \) is right angled at \( \mathrm{C} \), then the value of \( \cos (\mathrm{A}+\mathrm{B}) \) is(A) 0(B) 1(C) \( \frac{1}{2} \)(D) \( \frac{\sqrt{3}}{2} \)
If $a ≠ b ≠ c$, prove that the points $(a, a^2), (b, b^2), (c, c^2)$ can never be collinear.
Suppose $a,\ b,\ c$ are in AP, then prove that $b=\frac{a+c}{2}$.
If the angles $A,\ B,\ C$ of a $\vartriangle ABC$ are in A.P., then prove that $b^2=a^2+c^2-ac$.
In Fig. 5.10, if \( \mathrm{AC}=\mathrm{BD} \), then prove that \( \mathrm{AB}=\mathrm{CD} \)."\n
In the given figure, $AD$ is a median of a triangle $ABC$ and $AM \perp BC$. Prove that$\mathrm{AC}^{2}+\mathrm{AB}^{2}=2 \mathrm{AD}^{2}+\frac{1}{2} \mathrm{BC}^{2}$"
Prove that\( \frac{a+b+c}{a^{-1} b^{-1}+b^{-1} c^{-1}+c^{-1} a^{-1}}=a b c \)
Kickstart Your Career
Get certified by completing the course
Get Started