If $V$ is the volume of a cuboid of dimensions $a, b, c$ and $S$ is its surface area, then prove that $\frac{1}{\mathrm{~V}}=\frac{2}{\mathrm{~S}}(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})$
Given:
$V$ is the volume of a cuboid of dimensions $a, b, c$ and $S$ is its surface area.
To do:
We have to prove that
$\frac{1}{\mathrm{~V}}=\frac{2}{\mathrm{~S}}(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})$.
Solution:
$V = a \times b \times c$
$=abc$
$S = 2(lb + bc + ca)$
RHS $=\frac{2}{\mathrm{~S}}(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})$
$=\frac{2}{\mathrm{~S}}(\frac{b c+c a+a b}{a b c})$
$=\frac{2}{\mathrm{~S}} \times \frac{\mathrm{S}}{2 \mathrm{~V}}$
$=\frac{1}{\mathrm{~V}}$
$=$ LHS.
Hence proved.
Related Articles Prove that \( \frac{a^{-1}}{a^{-1}+b^{-1}}+\frac{a^{-1}}{a^{-1}-b^{-1}}=\frac{2 b^{2}}{b^{2}-a^{2}} \)
If \( \sin \mathrm{A}=\frac{1}{2} \), then the value of \( \cot \mathrm{A} \) is(A) \( \sqrt{3} \)(B) \( \frac{1}{\sqrt{3}} \)(C) \( \frac{\sqrt{3}}{2} \)(D) 1
If \( a b c=1 \), show that \( \frac{1}{1+a+b^{-1}}+\frac{1}{1+b+c^{-1}}+\frac{1}{1+c+a^{-1}}=1 \)
Prove that\( \frac{1}{1+x^{b-a}+x^{c-a}}+\frac{1}{1+x^{a-b}+x^{c-b}}+\frac{1}{1+x^{b-c}+x^{a-c}}=1 \)
Show that:\( \left(x^{\frac{1}{a-b}}\right)^{\frac{1}{a-c}}\left(x^{\frac{1}{b-c}}\right)^{\frac{1}{b-a}}\left(x^{\frac{1}{c-a}}\right)^{\frac{1}{c-b}}=1 \)
If \( \triangle \mathrm{ABC} \) is right angled at \( \mathrm{C} \), then the value of \( \cos (\mathrm{A}+\mathrm{B}) \) is(A) 0(B) 1(C) \( \frac{1}{2} \)(D) \( \frac{\sqrt{3}}{2} \)
Prove that\( \frac{1}{1+x^{a-b}}+\frac{1}{1+x^{b-a}}=1 \)
If $\frac{1}{b} \div \frac{b}{a} = \frac{a^2}{b}$, where a, b not equal to 0, then find the value of $\frac{\frac{a}{(\frac{1}{b})} - 1}{\frac{a}{b}}$.
Bisectors of angles \( \mathrm{A}, \mathrm{B} \) and \( \mathrm{C} \) of a triangle \( \mathrm{ABC} \) intersect its circumcircle at \( \mathrm{D}, \mathrm{E} \) and Frespectively. Prove that the angles of the triangle \( \mathrm{DEF} \) are \( 90^{\circ}-\frac{1}{2} \mathrm{~A}, 90^{\circ}-\frac{1}{2} \mathrm{~B} \) and \( 90^{\circ}-\frac{1}{2} \mathrm{C} \).
Simplify: $-\frac{1}{2}a^{2}b^{2}c+\frac{1}{3}ab^{2}c-\frac{1}{4}abc^{2}-\frac{1}{5}cb^{2}a^{2}+\frac{1}{6}cb^{2}a-\frac{1}{7}c^{2}ab+\frac{1}{8}ca^{2}b$.
Prove that the points $(a, 0), (0, b)$ and $(1, 1)$ are collinear if, $\frac{1}{a} + \frac{1}{b} = 1$.
i)a) $\frac{1}{4} of \frac{1}{4}$b) $\frac{1}{4} of \frac{3}{5} $c) $\frac{1}{4} of \frac{4}{3} $ii) a) $\frac{1}{ 7} of \frac{2}{ 9}$b) $\frac{1}{ 7} of \frac{6}{5}$c) $\frac{1}{ 7} of \frac{3}{10}$
Prove that\( \frac{a+b+c}{a^{-1} b^{-1}+b^{-1} c^{-1}+c^{-1} a^{-1}}=a b c \)
Simplify \( (\frac{1}{2})^{4} \div(\frac{-1}{2})^{3} \) is equals to(a.) $\frac{-1}{2}$(b.) $\frac{1}{2}$(c.) 1(d.) 0
Fill in the boxes: (a) \( \square-\frac{5}{8}=\frac{1}{4} \)(b) \( \square-\frac{1}{5}=\frac{1}{2} \)(c) \( \frac{1}{2}-\square=\frac{1}{6} \)
Kickstart Your Career
Get certified by completing the course
Get Started