Find the following products and verify the result for $x = -1, y = -2$:
$(3x-5y)(x+y)$
Given:
$(3x-5y)(x+y)$
To do:
We have to find the given product and verify the result for $x = -1, y = -2$.
Solution:
We know that,
$(a+b)\times(c+d)=a(c+d)+b(c+d)$
Therefore,
$(3x-5y)(x+y) = 3x \times (x + y) - 5y \times (x + y)$
$= 3x \times x + 3x \times y-5y \times x-5y \times y$
$= 3x^2 + 3xy - 5xy - 5y^2$
$= 3x^2 - 2xy - 5y^2$
LHS $= (3x-5y)(x+y)$
$= [3 (-1) -5 (-2)] [-1 +(-2)]$
$= (-3 + 10) (-3)$
$= 7 \times (-3)$
$= -21$
RHS $= 3x^2 - 2xy - 5y^2$
$= 3 (-1)^2 - 2 (-1) (-2) -5(-2)^2$
$=3(1)-4-5(4)$
$=3-4-20$
$= 3-24$
$= -21$
Therefore,
LHS $=$ RHS
- Related Articles
- Find the following products and verify the result for $x = -1, y = -2$:$(x^2y-1) (3-2x^2y)$
- Find the following products and verify the result for $x = -1, y = -2$:\( \left(\frac{1}{3} x-\frac{y^{2}}{5}\right)\left(\frac{1}{3} x+\frac{y^{2}}{5}\right) \)
- Express each of the following products as a monomial and verify the result for $x = 1,y = 2$:\( \left(\frac{1}{8} x^{2} y^{4}\right) \times\left(\frac{1}{4} x^{4} y^{2}\right) \times(x y) \times 5 \)
- Find the product of $(-3 x y z)(\frac{4}{9} x^{2} z)(-\frac{27}{2} x y^{2} z)$ and verify the result for ; $x=2, y=3$ and $z=-1$
- Find the following products:\( \left(\frac{x}{2}+2 y\right)\left(\frac{x^{2}}{4}-x y+4 y^{2}\right) \)
- Find the product of $(5x^2y-4xy^2)$ and $(7x^2+8y^2)$ and verify the result for $x=1, y=-2$.
- Express each of the following products as a monomial and verify the result for $x = 1,y = 2$:$(-xy^3) \times (yx^3) \times (xy)$
- Multiply $-\frac{3}{2}x^2y^3$ by $(2x-y)$ and verify the answer for $x = 1$ and $y = 2$.
- Find the degree of the following polynomials: $x^3-x^2+3x+y^2$.
- 1. Factorize the expression \( 3 x y - 2 + 3 y - 2 x \)A) \( (x+1),(3 y-2) \)B) \( (x+1),(3 y+2) \)C) \( (x-1),(3 y-2) \)D) \( (x-1),(3 y+2) \)2. Factorize the expression \( \mathrm{xy}-\mathrm{x}-\mathrm{y}+1 \)A) \( (x-1),(y+1) \)B) \( (x+1),(y-1) \)C) \( (x-1),(y-1) \)D) \( (x+1),(y+1) \)
- If $\frac{x+1}{y} = \frac{1}{2}, \frac{x}{y-2} = \frac{1}{2}$, find x and y.
- Multiply the monomial by the binomial and find the value of each for $x = -1, y = 0.25$ and $z =0.05$:(i) $15y^2 (2 - 3x)$(ii) $-3x (y^2 + z^2)$(iii) $z^2 (x - y)$(iv) $xz (x^2 + y^2)$
- Verify : (i) \( x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right) \)(ii) \( x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right) \)
- Verify the property \( x \times(y+z)=(x \times y)+(x \times z) \) for the given values of \( x,\ y \) and \( z \).\( x=\frac{-5}{2}, y=\frac{1}{2} \) and \( z=-\frac{10}{7} \)>
- Find the following products:\( 250.5 x y\left(x z+\frac{y}{10}\right) \)
Kickstart Your Career
Get certified by completing the course
Get Started