- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Express each of the following products as a monomial and verify the result for $x = 1,y = 2$:
$ \left(\frac{1}{8} x^{2} y^{4}\right) \times\left(\frac{1}{4} x^{4} y^{2}\right) \times(x y) \times 5 $
Given:
\( \left(\frac{1}{8} x^{2} y^{4}\right) \times\left(\frac{1}{4} x^{4} y^{2}\right) \times(x y) \times 5 \)
To do:
We have to express the given product as a monomial and verify the result for $x = 1,y = 2$.
Solution:
$(\frac{1}{8} x^{2} y^{4}) \times(\frac{1}{4} x^{4} y^{2}) \times(x y) \times 5=\frac{1}{8} \times \frac{1}{4} \times 5 \times x^{2} \times x^{4} \times x \times y^{4} \times y^{2} \times y$
$=\frac{5}{32} x^{2+4+1} \times y^{4+2+1}$
$=\frac{5}{32} x^{7} \times y^{7}$
$=\frac{5}{32} x^{7} y^{7}$
LHS $=(\frac{1}{8} x^{2} y^{4}) \times(\frac{1}{4} x^{4} y^{2}) \times(x y) \times 5$
$=\frac{1}{8} \times(1)^{2} \times(2)^{4} \times \frac{1}{4}(1)^{4}(2)^{2} \times 1 \times 2 \times 5$
$=\frac{1}{8} \times 1 \times 16 \times \frac{1}{4} \times 1 \times 4 \times 1 \times 2 \times 5$
$=\frac{640}{32}$
$=20$
RHS $=\frac{5}{32} x^{7} \times y^{7}$
$=\frac{5}{32}(1)^{7}(2)^{7}$
$=\frac{5}{32} \times 1 \times 128$
$=5 \times 4$
$=20$
Therefore,
LHS $=$ RHS