- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find the area of rhombus each side of which measures $20\ cm$ and whose diagonals is $24\ cm$.
Given: Each side of a rhombus measures $20\ cm$ and whose diagonals is $24\ cm$.
To do: To find the area of rhombus.
Solution:
$AO=OC=CB=BA=20\ cm$ ............. [side of rhombus]
$AC=24\ cm$
$AO=\frac{1}{2}\times AC=\frac{1}{2}\times 24=12\ cm$ ........[originals of rhombus bisect each other]
$\Rightarrow$ In right angled triangle $\vartriangle AOD$,
$AD^2=AO^2+OD^2$ ........ By Pythagoras theorem
$(20)^2=( 12)^2+OD^2$
$\Rightarrow OD^2=400-144$
$\Rightarrow OD=256$
$\Rightarrow OD=16\ cm$
$\Rightarrow OB=2\times16=32\ cm$
$\Rightarrow$ Area of rhombus$=\frac{1}{2}\times product\ of\ diagonals$
$=\frac{1}{2}\times32\times24=384\ cm^2$.
Advertisements