Find the area of a quadrilateral $ABCD$ in which $AB = 42\ cm, BC = 21\ cm, CD = 29\ cm, DA = 34\ cm$ and diagonal $BD = 20\ cm$.
Given:
A quadrilateral $ABCD$ in which $AB = 42\ cm, BC = 21\ cm, CD = 29\ cm, DA = 34\ cm$ and diagonal $BD = 20\ cm$.
To do:
We have to find the area of the quadrilateral.
Solution:
Area of $\triangle \mathrm{ABD}$,
$s=\frac{a+b+c}{2}$
$=\frac{42+20+34}{2}$
$=\frac{96}{2}$
$=48$
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{48(48-42)(48-20)(48-34)}$
$=\sqrt{48 \times 6 \times 28 \times 14}$
$=\sqrt{4 \times 4 \times 3 \times 3 \times 2 \times 2 \times 14 \times 14}$
$=4 \times 3 \times 2 \times 14$
$=336 \mathrm{~cm}^{2}$
Area of triangle $BCD$,
$s=\frac{a+b+c}{2}$
$=\frac{20+21+29}{2}$
$=\frac{70}{2}$
$=35$
Area of the triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{35(35-20)(35-21)(35-29)}$
$=\sqrt{35 \times 15 \times 14 \times 6}$
$=\sqrt{7 \times 5 \times 5 \times 3 \times 3 \times 2 \times 2 \times 7}$
$=7 \times 5 \times 3 \times 2$
$=210 \mathrm{~cm}^{2}$
Area of quadrilateral $\mathrm{ABCD} =336+210$
$=546 \mathrm{~cm}^{2}$.
- Related Articles
- Find the area of a quadrilateral $ABCD$ in which $AB = 3\ cm, BC = 4\ cm, CD = 4\ cm, DA = 5\ cm$ and $AC = 5\ cm$.
- Find the area of a quadrilateral \( \mathrm{ABCD} \) in which \( \mathrm{AB}=3 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}, \mathrm{CD}=4 \mathrm{~cm} \), \( \mathrm{DA}=5 \mathrm{~cm} \) and \( \mathrm{AC}=5 \mathrm{~cm} \).
- The adjacent sides of a parallelogram $ABCD$ measures $34\ cm$ and $20\ cm$, and the diagonal $AC$ measures $42\ cm$. Find the area of the parallelogram.
- Find the perimeter and area of the quadrilateral $ABCD$ in which $AB = 17\ cm, AD = 9\ cm, CD = 12\ cm, \angle ACB = 90^o$ and $AC = 15\ cm$.
- In a triangle, $P, Q$ and $R$ are the mid-points of sides $BC, CA$ and $AB$ respectively. If $AC = 21\ cm, BC = 29\ cm$ and $AB = 30\ cm$, find the perimeter of the quadrilateral $ARPQ$.
- In figure below, AD bisects $\angle A$, $AB=12\ cm, AC=20\ cm$ and $BD=5\ cm$, determine CD."\n
- Find the area of the quadrilateral ABCD. Here, AC = 22 cm, BM = 3 cm,DN = 3 cm
- Construct a rectangle $ABCD$, where $AB =12\ cm,\ BC=5\ cm$.
- In the figure, $ABCD$ is a trapezium in which $AB = 7\ cm, AD = BC = 5\ cm, DC = x\ cm$, and distance between $AB$ and $DC$ is $4\ cm$. Find the value of $x$ and area of trapezium $ABCD$."\n
- Construct the quadrilateral ABCD. AB is equal to 4.5 cm, BC is equal to 5.5 cm, CD is equal to 4 cm, AD is equal to 6 cm and AC is equal to 7 cm
- $ABCD$ is quadrilateral. Is $AB + BC + CD + DA < 2 (AC + BD)?$
- In figure below, we have $AB \parallel CD \parallel EF$. If $AB=6\ cm, CD=x\ cm, EF=10\ cm, BD=4\ cm$ and $DE=y\ cm$, calculate the values of $x$ and $y$."\n
- In a Parallelogram $ABCD, AB = 18\ cm, BC=12\ cm, AL \perp\ DC, AM \perp\ BC$ and $AL = 6.4\ cm$. Find the length of $AM$.
- In fig. 3, a circle touches all the four sides of a quadrilateral ABCD whose sides are AB$=6$ cm, BC$=9$ cm and CD$=8$ cm. Find the length of the side AD."\n
- In figure below, $∠\ ABC\ =\ 90^o$ and $BD\ ⊥\ AC$. If $AC\ =\ 5.7\ cm$, $BD\ =\ 3.8\ cm$ and $CD\ =\ 5.4\ cm$, find $BC$."\n
Kickstart Your Career
Get certified by completing the course
Get Started