- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Factorize:$9(2a - b)^2 - 4(2a - b) - 13$
Given :
$9(2a - b)^2 - 4(2a - b) - 13$
To do :
We have to factorize the given expression.
Solution :
$9(2 a-b)^{2}-4(2 a-b)-13$
Let $2 a-b=x$
This implies,
$9(2 a-b)^{2}-4(2 a-b)-13=9 x^{2}-4 x-13$
$=9 x^{2}+9 x-13 x-13$
$=9 x(x+1)-13(x+1)$
$=(x+1)(9 x-13)$
$\Rightarrow 9(2 a-b)^{2}-4(2 a-b)-13=(2 a-b+1)[9(2 a-b)-13]$
$=(2 a-b+1)(18 a-9 b-13)$
Hence, $9(2 a-b)^{2}-4(2 a-b)-13=(2 a-b+1)(18 a-9 b-13)$.
Advertisements