Factorise $\frac{3}{x} -1+\frac{4}{x} -3\ =\ \frac{15}{x} +3$
Given:
$\frac{3}{x} -1+\frac{4}{x} -3\ =\ \frac{15}{x} +3$
To do: Factorize
Solution:
$\frac{3}{x-1}+\frac{4}{x-3}=\frac{15}{x+3}$
$\frac{3x - 9 + 4x - 4 }{x - 1}\times(x - 3) = \frac{15}{x+3}$
$\frac{7x - 13}{x - 1}\times(x - 3) = \frac{15}{x+3}$
$a\frac{7x - 13}{x+3} = 15\frac{x - 1}{x - 3}$
$7x^{2} - 13x + 21x - 39 = 15x^{2} - 60x + 45$
$8x^{2} - 68x + 84 = 0$
$2x^{2} - 17x + 21 = 0$
$2x^{2} - 14x -3x + 21 = 0$
$2x(x - 7) -3(x - 7)$
$(2x - 3)(x - 7) = 0$
$\frac{3}{x-1}+\frac{4}{x-3}=\frac{15}{x+3}$ factorized as
=$ (2x - 3)(x - 7)$
- Related Articles
- Solve for $x$:$\frac{x-1}{x-2}+\frac{x-3}{x-4}=3\frac{1}{3}, x≠2, 4$
- If \( x+\frac{1}{x}=3 \), calculate \( x^{2}+\frac{1}{x^{2}}, x^{3}+\frac{1}{x^{3}} \) and \( x^{4}+\frac{1}{x^{4}} \).
- Solve:\( \frac{2 x}{3}+1=\frac{7 x}{15}+3 \)
- Solve for $x$:\( 3 x-\frac{x-2}{3}=4-\frac{x-1}{4} \)
- If \( x^{4}+\frac{1}{x^{4}}=194 \), find \( x^{3}+\frac{1}{x^{3}}, x^{2}+\frac{1}{x^{2}} \) and \( x+\frac{1}{x} \)
- Take away:\( \frac{6}{5} x^{2}-\frac{4}{5} x^{3}+\frac{5}{6}+\frac{3}{2} x \) from \( \frac{x^{3}}{3}-\frac{5}{2} x^{2}+\frac{3}{5} x+\frac{1}{4} \)
- If $( \frac{( 3 x-4)^{3}-( x+1)^{3}}{( 3 x-4)^{3}+( x+1)^{3}}=\frac{61}{189})$, find the value of $x$.
- Solve the following quadratic equation by factorization: $\frac{x-1}{x-2}+\frac{x-3}{x-4}=3\frac{1}{3}, x≠2, 4$
- Solve the following pairs of equations by reducing them to a pair of linear equations:(i) \( \frac{1}{2 x}+\frac{1}{3 y}=2 \)\( \frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6} \)(ii) \( \frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 \)\( \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1 \)(iii) \( \frac{4}{x}+3 y=14 \)\( \frac{3}{x}-4 y=23 \)(iv) \( \frac{5}{x-1}+\frac{1}{y-2}=2 \)\( \frac{6}{x-1}-\frac{3}{y-2}=1 \)(v) \( \frac{7 x-2 y}{x y}=5 \)\( \frac{8 x+7 y}{x y}=15 \),b>(vi) \( 6 x+3 y=6 x y \)\( 2 x+4 y=5 x y \)4(vii) \( \frac{10}{x+y}+\frac{2}{x-y}=4 \)\( \frac{15}{x+y}-\frac{5}{x-y}=-2 \)(viii) \( \frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4} \)\( \frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=\frac{-1}{8} \).
- $\frac{x-1}{2}+\frac{2 x-1}{4}=\frac{x-1}{3}-\frac{2 x-1}{6}$.
- If \( x^{4}+\frac{1}{x^{4}}=119 \), find the value of \( x^{3}-\frac{1}{x^{3}} \).
- Factorize:\( \frac{8}{27} x^{3}+1+\frac{4}{3} x^{2}+2 x \)
- \Find $(x +y) \div (x - y)$. if,(i) \( x=\frac{2}{3}, y=\frac{3}{2} \)(ii) \( x=\frac{2}{5}, y=\frac{1}{2} \)(iii) \( x=\frac{5}{4}, y=\frac{-1}{3} \)(iv) \( x=\frac{2}{7}, y=\frac{4}{3} \)(v) \( x=\frac{1}{4}, y=\frac{3}{2} \)
- Solve the rational equation $\frac{2}{(x-3)} + \frac{1}{x} = \frac{(x-1)}{(x-3)}$.
- Solve for $x$:$\frac{1}{x-3}-\frac{1}{x+5}=\frac{1}{6}, x≠3, -5$
Kickstart Your Career
Get certified by completing the course
Get Started