- Trending Categories
- Data Structure
- Networking
- RDBMS
- Operating System
- Java
- MS Excel
- iOS
- HTML
- CSS
- Android
- Python
- C Programming
- C++
- C#
- MongoDB
- MySQL
- Javascript
- PHP
- Physics
- Chemistry
- Biology
- Mathematics
- English
- Economics
- Psychology
- Social Studies
- Fashion Studies
- Legal Studies

- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who

# An aircraft travelling at $600\ km/h$ accelerates steadily at $10\ km/h$ per second. Taking the speed of sound as $1100\ km/h$ at the aircraftâ€™s altitude, how long will it take to reach the â€˜sound barrierâ€™ ?

Here given, initial velocity $u=600\ km/h=600\times\frac{5}{18}=\frac{1500}{9}\ m/s$

Final velocity $v=1100\ km/h=1100\times\frac{5}{18}\ m/s=\frac{2750}{9}\ m/s$

Steady acceleration $a=10\ km/h/s=10\frac{5}{18}\ m/s^2=\frac{25}{9}\ m/s^2$â€Š

On using the equation, $v=u+at$

$\frac{2750}{9}=\frac{1500}{9}+\frac{25}{9}\times t$

Or $2750=1500+25t$

Or $25t=2750-1500$

Or $25t=1250$

Or $t=\frac{1250}{25}$

Or $t=50\ seconds$

Therefore, the aircraft will take $50\ seconds$ to cross the barrier.

Advertisements