- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
An aircraft travelling at $600\ km/h$ accelerates steadily at $10\ km/h$ per second. Taking the speed of sound as $1100\ km/h$ at the aircraft’s altitude, how long will it take to reach the ‘sound barrier’ ?
Here given, initial velocity $u=600\ km/h=600\times\frac{5}{18}=\frac{1500}{9}\ m/s$
Final velocity $v=1100\ km/h=1100\times\frac{5}{18}\ m/s=\frac{2750}{9}\ m/s$
Steady acceleration $a=10\ km/h/s=10\frac{5}{18}\ m/s^2=\frac{25}{9}\ m/s^2$ 
On using the equation, $v=u+at$
$\frac{2750}{9}=\frac{1500}{9}+\frac{25}{9}\times t$
Or $2750=1500+25t$
Or $25t=2750-1500$
Or $25t=1250$
Or $t=\frac{1250}{25}$
Or $t=50\ seconds$
Therefore, the aircraft will take $50\ seconds$ to cross the barrier.
Advertisements