"
">

$ABCD$ is a kite and $\angle A=\angle C$. If $\angle CAD=60^{\circ}$ and $\angle CBD=45^{\circ}$, find
$( a).\ \angle BCD$
$( b). \angle CDA$"


Given: $ABCD$ is a kite and $\angle A=\angle C$ and $\angle CAD=60^{\circ}$ and $\angle CBD=45^{\circ}$.

To do: To find:


$( a).\ \angle BCD$


$( b).\ \angle CDA$


Solution:



Consider the point of intersection of the two diagonals as $O$.

In $\vartriangle AOD$ and $\vartriangle COD$,

$AD=CD$          [Adjacent sides of kite are equal]

$AO=CO$           [BD bisects AC]

$OD=OD             [Common]

$\therefore  \vartriangle AOD\cong\vartriangle COD$

Hence,

$\angle CAD=\angle ACD=60^o$

Using angle sum property in $\vartriangle ACD$,

$\angle CAD+\angle ACD+\angle CDA=180^o$

$\Rightarrow 60+60+\angle CDA=180$

$\Rightarrow \angle CDA=180-120$

$\Rightarrow \angle CDA=60^o$

In $\vartriangle AOB$ and $\vartriangle COB$,

$AO=CO$                 [BD bisects AC]

$OB=OB$                 [Common]

$AB=BC$                 [Adjacent sides of kite are equal]

$\therefore \vartriangle AOB\cong\vartriangle COB$

Hence,

$\angle AOB=\angle COB$

$\angle BAO=\angle BCO$

Using linear pair property,

$\angle AOB+\angle COB=180^o$

$\Rightarrow 2\times\angle AOB=180$

$\Rightarrow \angle AOB=90^o=\angle COB$

Using angle sum property in $\vartriangle BOC$.

$\angle OBC+\angle COB+\angle BCO=180$

$\Rightarrow 45+90+\angle BCO=180$

$\Rightarrow \angle BCO=180-135$

$\Rightarrow \angle BCO=45^o$

Therefore,

$\angle BCD=\angle BCO+\angle DCO$

$\angle BCD=45+60$

$\angle BCD=105^o$

Updated on: 10-Oct-2022

212 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements