If $\angle ABC= 65^{\circ}$. Measure the supplementary angle of $\angle ABC$.
Given: $\angle ABC=65^{\circ}$.
To do: To find the supplementary angle of $\angle ABC$.
Solution:
As given, $\angle ABC=65^{\circ}$
Therefore, Supplementary angle of $\angle ABC=180^{\circ}-65^{\circ}=115^{\circ}$
- Related Articles
- In a rhombus ABCD, $\angle$DAC = 45* . Find the measure of following anglesa)$\angle$ACBb)$\angle$ADBc)$\angle$ABC
- \( \triangle \mathrm{ABC} \sim \triangle \mathrm{QPR} . \) If \( \angle \mathrm{A}+\angle \mathrm{B}=130^{\circ} \) and \( \angle B+\angle C=125^{\circ} \), find \( \angle Q \).
- The measure of an angle is twice the measure of its supplementary angle. Find its measure.
- Draw an angle of \( 40^{\circ} \). Copy its supplementary angle.
- In a $\triangle ABC, \angle ABC = \angle ACB$ and the bisectors of $\angle ABC$ and $\angle ACB$ intersect at $O$ such that $\angle BOC = 120^o$. Show that $\angle A = \angle B = \angle C = 60^o$.
- In the given figure, $RT||SQ$. If $\angle QPS=110^{\circ}$, $\angle PQS=40^{\circ}$, $\angle PSR=75^{\circ}$ and $\angle QRS=65^{\circ}$, then find the value of $\angle QRT$"\n
- Find $\angle$ABC, $\angle$BAC and $\angle$CAF"\n
- \( \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR} \). If \( 2 \angle \mathrm{P}=3 \angle \mathrm{Q} \) and \( \angle C=100^{\circ} \), find \( \angle B \).
- In the given figure, the arms of two angles are parallel. If $\angle ABC = 70^{\circ}$, then find$(i).\ \angle DGC$$(ii).\ \angle DEF$"
- In $∆ABC$, $\angle A=30^{\circ},\ \angle B=40^{\circ}$ and $\angle C=110^{\circ}$In $∆PQR$, $\angle P=30^{\circ},\ \angle Q=40^{\circ}$ and $\angle R=110^{\circ}$. A student says that $∆ABC ≅ ∆PQR$ by $AAA$ congruence criterion. Is he justified? Why or why not?
- Find $\angle ABC=?$"\n
- Construct $∆ABC$, given $m\angle A = 60^{\circ}$, $m\angle B = 30^{\circ}$ and $AB = 5.8\ cm$.
- In a $\triangle ABC$, if $\angle A = 55^o, \angle B = 40^o$, find $\angle C$.
- In an isosceles angle ABC, the bisectors of angle B and angle C meet at a point O if angle A = 40, then angle BOC = ?
- In the figure, arms $BA$ and $BC$ of $\angle ABC$ are respectively parallel to arms $ED$ and $EF$ of $\angle DEF$. Prove that $\angle ABC = \angle DEF$."\n
Kickstart Your Career
Get certified by completing the course
Get Started