$ \mathrm{ABCD} $ is a cyclic quadrilateral whose diagonals intersect at a point $ \mathrm{E} $. If $ \angle \mathrm{DBC}=70^{\circ} $, $ \angle \mathrm{BAC} $ is $ 30^{\circ} $, find $ \angle \mathrm{BCD} $. Further, if $ \mathrm{AB}=\mathrm{BC} $, find $ \angle \mathrm{ECD} $.
Given:
\( \mathrm{ABCD} \) is a cyclic quadrilateral whose diagonals intersect at a point \( \mathrm{E} \).
\( \angle \mathrm{DBC}=70^{\circ} \), \( \angle \mathrm{BAC} \) is \( 30^{\circ} \)
\( \mathrm{AB}=\mathrm{BC} \)
To do:
We have to find \( \angle \mathrm{BCD} \) and \( \angle \mathrm{ECD} \).
Solution:

We know that,
The angles in the same segment of a circle are equal.
This implies,
$\angle BDC = \angle BAC=30^o$
In $\triangle BCD$,
$\angle BDC + \angle DBC + \angle BCD = 180^o$
$30^o+70^o+\angle BCD=180^o$
$100^o+\angle BCD=180^o$
$\angle BCD=180^o-100^o$
$\angle BCD=80^o$
$AB = BC$
This implies,
$\angle BCA = \angle BAC= 80^o$ (Angles opposite to equal sides in a triangle are equal)
$\angle ECD = \angle BCD - \angle BCA$
$= 80^o - 30^o$
$= 50^o$
Hence, $\angle BCD = 80^o$ and $\angle ECD = 50^o$.
- Related Articles
- In Fig. 6.13, lines \( \mathrm{AB} \) and \( \mathrm{CD} \) intersect at \( \mathrm{O} \). If \( \angle \mathrm{AOC}+\angle \mathrm{BOE}=70^{\circ} \) and \( \angle \mathrm{BOD}=40^{\circ} \), find \( \angle \mathrm{BOE} \) and reflex \( \angle \mathrm{COE} \)."\n
- In Fig. 6.41, if \( \mathrm{AB} \| \mathrm{DE}, \angle \mathrm{BAC}=35^{\circ} \) and \( \angle \mathrm{CDE}=53^{\circ} \), find \( \angle \mathrm{DCE} \)."\n
- $ABCD$ is a cyclic quadrilateral whose diagonals intersect at a point $E$. If $\angle DBC =70â°$, $\angle BAC=30â°$. Find $\angle BCD$. Further if $AB=BC$, find $\angle ECD$.
- In Fig. 6.42, if lines \( \mathrm{PQ} \) and \( \mathrm{RS} \) intersect at point \( \mathrm{T} \), such that \( \angle \mathrm{PRT}=40^{\circ}, \angle \mathrm{RPT}=95^{\circ} \) and \( \angle \mathrm{TSQ}=75^{\circ} \), find \( \angle \mathrm{SQT} \)."\n
- In figure below, A, B, C and D are four points on a circle. \( \mathrm{AC} \) and \( \mathrm{BD} \) intersect at a point \( \mathrm{E} \) such that \( \angle \mathrm{BEC}=130^{\circ} \) and \( \angle \mathrm{ECD}=20^{\circ} \). Find \( \angle \mathrm{BAC} \)."\n
- In Fig. 6.30, if \( \mathrm{AB} \| \mathrm{CD} \), EF \( \perp \mathrm{CD} \) and \( \angle \mathrm{GED}=126^{\circ} \), find \( \angle \mathrm{AGE}, \angle \mathrm{GEF} \) and \( \angle \mathrm{FGE} \)."\n
- \( \triangle \mathrm{ABC} \sim \triangle \mathrm{QPR} . \) If \( \angle \mathrm{A}+\angle \mathrm{B}=130^{\circ} \) and \( \angle B+\angle C=125^{\circ} \), find \( \angle Q \).
- In a quadrilateral \( \mathrm{ABCD}, \angle \mathrm{A}+\angle \mathrm{D}=90^{\circ} \). Prove that \( \mathrm{AC}^{2}+\mathrm{BD}^{2}=\mathrm{AD}^{2}+\mathrm{BC}^{2} \) [Hint: Produce \( \mathrm{AB} \) and DC to meet at E]
- \( \mathrm{ABC} \) is a right angled triangle in which \( \angle \mathrm{A}=90^{\circ} \) and \( \mathrm{AB}=\mathrm{AC} \). Find \( \angle \mathrm{B} \) and \( \angle \mathrm{C} \).
- Choose the correct answer from the given four options:It is given that \( \triangle \mathrm{ABC} \sim \triangle \mathrm{DFE}, \angle \mathrm{A}=30^{\circ}, \angle \mathrm{C}=50^{\circ}, \mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=8 \mathrm{~cm} \) and \( D F=7.5 \mathrm{~cm} \). Then, the following is true:(A) \( \mathrm{DE}=12 \mathrm{~cm}, \angle \mathrm{F}=50^{\circ} \)(B) \( \mathrm{DE}=12 \mathrm{~cm}, \angle \mathrm{F}=100^{\circ} \)(C) \( \mathrm{EF}=12 \mathrm{~cm}, \angle \mathrm{D}=100^{\circ} \)(D) \( \mathrm{EF}=12 \mathrm{~cm}, \angle \mathrm{D}=30^{\circ} \)
- In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is a median. If \( \mathrm{AB}=15 \) and \( \mathrm{BC}=20 \), find \( \mathrm{BM} \).
- In Fig. \( 6.40, \angle \mathrm{X}=62^{\circ}, \angle \mathrm{XYZ}=54^{\circ} \). If \( \mathrm{YO} \) and \( Z \mathrm{O} \) are the bisectors of \( \angle \mathrm{XYZ} \) and \( \angle \mathrm{XZY} \) respectively of \( \triangle \mathrm{XYZ} \) find \( \angle \mathrm{OZY} \) and \( \angle \mathrm{YOZ} \)."\n
- In triangles \( \mathrm{PQR} \) and \( \mathrm{MST}, \angle \mathrm{P}=55^{\circ}, \angle \mathrm{Q}=25^{\circ}, \angle \mathrm{M}=100^{\circ} \) and \( \angle \mathrm{S}=25^{\circ} \). Is \( \triangle \mathrm{QPR} \sim \triangle \mathrm{TSM} \) ? Why?
- In the figure two straight lines \( \mathrm{AB} \& \mathrm{CD} \) intersect at \( \mathrm{O} \). If \( \angle \mathrm{COT}=60^{\circ} \), find \( \mathrm{a}, \mathrm{b}, \mathrm{c} \)."\n
- In \( \triangle \mathrm{ABC}, \angle \mathrm{C}=90^{\circ}, \mathrm{AB}=12.5 \) and \( \mathrm{BC}=12 \). Find \( \mathrm{AC} \).
Kickstart Your Career
Get certified by completing the course
Get Started