- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
In the given diagram, name the point(s)

(a) In the interior of $ \angle \mathrm{DOE} $
(b) In the exterior of $ \angle \mathrm{EOF} $
(c) On $ \angle \mathrm{EOF} $"
To do:
We have to name the point(s)
(a) In the interior of \( \angle \mathrm{DOE} \)
(b) In the exterior of \( \angle \mathrm{EOF} \)
(c) On \( \angle \mathrm{EOF} \)
Solution:
(a) We can observe that,
Point $A$ is in the interior of \( \angle \mathrm{DOE} \).
(b) We can observe that,
Points $C, A$ and $D$ are in the exterior of \( \angle \mathrm{EOF} \).
(c) The point(s) on \( \angle \mathrm{EOF} \) are $E, B, O$ and $F$.
- Related Articles
- \( \angle \mathrm{A} \) and \( \angle \mathrm{B} \) are supplementary angles. \( \angle \mathrm{A} \) is thrice \( \angle \mathrm{B} \). Find the measures of \( \angle \mathrm{A} \) and \( \angle \mathrm{B} \)\( \angle \mathrm{A}=\ldots \ldots, \quad \angle \mathrm{B}=\ldots \ldots \)
- Choose the correct answer from the given four options:If in triangles \( \mathrm{ABC} \) and \( \mathrm{DEF}, \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{FD}} \), then they will be similar, when(A) \( \angle \mathrm{B}=\angle \mathrm{E} \)(B) \( \angle \mathrm{A}=\angle \mathrm{D} \)(C) \( \angle \mathrm{B}=\angle \mathrm{D} \)(D) \( \angle \mathrm{A}=\angle \mathrm{F} \)
- In Fig. 6.44, the side \( \mathrm{QR} \) of \( \triangle \mathrm{PQR} \) is produced to a point \( \mathrm{S} \). If the bisectors of \( \angle \mathrm{PQR} \) and \( \angle \) PRS meet at point \( T \), then prove that \( \angle \mathrm{QTR}=\frac{1}{2} \angle \mathrm{QPR} \)"\n
- In a parallelogram \( \mathrm{ABCD}, \angle \mathrm{A}: \angle \mathrm{B}=2: 3, \) then find angle \( \mathrm{D} \).
- In Fig. \( 6.40, \angle \mathrm{X}=62^{\circ}, \angle \mathrm{XYZ}=54^{\circ} \). If \( \mathrm{YO} \) and \( Z \mathrm{O} \) are the bisectors of \( \angle \mathrm{XYZ} \) and \( \angle \mathrm{XZY} \) respectively of \( \triangle \mathrm{XYZ} \) find \( \angle \mathrm{OZY} \) and \( \angle \mathrm{YOZ} \)."\n
- \( \triangle \mathrm{ABC} \sim \triangle \mathrm{QPR} . \) If \( \angle \mathrm{A}+\angle \mathrm{B}=130^{\circ} \) and \( \angle B+\angle C=125^{\circ} \), find \( \angle Q \).
- \( \mathrm{ABC} \) is a right angled triangle in which \( \angle \mathrm{A}=90^{\circ} \) and \( \mathrm{AB}=\mathrm{AC} \). Find \( \angle \mathrm{B} \) and \( \angle \mathrm{C} \).
- In \( \triangle \mathrm{PQR}, \quad \angle \mathrm{P}=\angle \mathrm{Q}+\angle \mathrm{R}, \mathrm{PQ}=7 \) and \( \mathrm{QR}=25 \). Find the perimeter of \( \triangle \mathrm{PQR} \).
- Line \( l \) is the bisector of an angle \( \angle \mathrm{A} \) and \( \mathrm{B} \) is any point on 1. BP and \( B Q \) are perpendiculars from \( B \) to the \( \operatorname{arms} \) of \( \angle \mathrm{A} \) (see Fig. 7.20). Show that:(i) \( \triangle \mathrm{APB} \cong \triangle \mathrm{AQB} \)(ii) \( \mathrm{BP}=\mathrm{BQ} \) or \( \mathrm{B} \) is equidistant from the arms of \( \angle \mathrm{A} \)."\n
- In Fig. 6.15, \( \angle \mathrm{PQR}=\angle \mathrm{PRQ} \), then prove that \( \angle \mathrm{PQS}=\angle \mathrm{PRT} \)"\n
- In \( \triangle \mathrm{ABC}, \angle \mathrm{A}=\angle \mathrm{B}+\angle \mathrm{C} \) and \( \mathrm{AM} \) is an altitude. If \( \mathrm{AM}=\sqrt{12} \) and \( \mathrm{BC}=8 \), find BM.
- Choose the correct answer from the given four options:It is given that \( \triangle \mathrm{ABC} \sim \triangle \mathrm{DFE}, \angle \mathrm{A}=30^{\circ}, \angle \mathrm{C}=50^{\circ}, \mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=8 \mathrm{~cm} \) and \( D F=7.5 \mathrm{~cm} \). Then, the following is true:(A) \( \mathrm{DE}=12 \mathrm{~cm}, \angle \mathrm{F}=50^{\circ} \)(B) \( \mathrm{DE}=12 \mathrm{~cm}, \angle \mathrm{F}=100^{\circ} \)(C) \( \mathrm{EF}=12 \mathrm{~cm}, \angle \mathrm{D}=100^{\circ} \)(D) \( \mathrm{EF}=12 \mathrm{~cm}, \angle \mathrm{D}=30^{\circ} \)
- \( \mathrm{AB} \) and \( \mathrm{CD} \) are respectively the smallest and longest sides of a quadrilateral \( \mathrm{ABCD} \) (see Fig. 7.50). Show that \( \angle A>\angle C \) and \( \angle \mathrm{B}>\angle \mathrm{D} \)."\n
- Draw any circle and mark points \( \mathrm{A}, \mathrm{B} \) and \( \mathrm{C} \) such that(a) \( \mathrm{A} \) is on the circle.(b) \( \mathrm{B} \) is in the interior of the circle.(c) \( \mathrm{C} \) is in the exterior of the circle.
- \( \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR} \). If \( 2 \angle \mathrm{P}=3 \angle \mathrm{Q} \) and \( \angle C=100^{\circ} \), find \( \angle B \).

Advertisements