In $ \triangle \mathrm{PQR}, \quad \angle \mathrm{P}=\angle \mathrm{Q}+\angle \mathrm{R}, \mathrm{PQ}=7 $ and $ \mathrm{QR}=25 $. Find the perimeter of $ \triangle \mathrm{PQR} $.
Given:
In \( \triangle \mathrm{PQR}, \angle \mathrm{P}=\angle \mathrm{Q}+\angle \mathrm{R}, \mathrm{PQ}=7 \) and \( \mathrm{QR}=25 \).
To do:
We have to find the perimeter of \( \triangle \mathrm{PQR} \).
Solution:
We know that,
Sum of the angles in a triangle is $180^o$.
Therefore,
$\angle P+\angle Q+\angle R=180^o$
$\angle P+\angle P=180^o$
$\angle P=\frac{180^o}{2}=90^o$
 This implies,
\( \triangle \mathrm{PQR} \) is a right-angled triangle.
Therefore,
$QR^2=PQ^2+PR^2$
$25^2=7^2+PR^2$
$PR^2=625-49$
$\Rightarrow PR=\sqrt{576}=24$
The perimeter of \( \triangle \mathrm{PQR}=PQ+QR+PR \)
$=7+25+24$
$=56$
The perimeter of \( \triangle \mathrm{PQR} \) is 56.
- Related Articles
- \( \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR} \). If \( 2 \angle \mathrm{P}=3 \angle \mathrm{Q} \) and \( \angle C=100^{\circ} \), find \( \angle B \).
- In triangles \( \mathrm{PQR} \) and \( \mathrm{MST}, \angle \mathrm{P}=55^{\circ}, \angle \mathrm{Q}=25^{\circ}, \angle \mathrm{M}=100^{\circ} \) and \( \angle \mathrm{S}=25^{\circ} \). Is \( \triangle \mathrm{QPR} \sim \triangle \mathrm{TSM} \) ? Why?
- 10. Construct \( \triangle \mathrm{PQR} \) with \( \mathrm{PQ}=4.5 \mathrm{~cm}, \angle \mathrm{P}=60^{\circ} \) and \( \mathrm{PR}=4.5 \mathrm{~cm} . \) Measure \( \angle \mathrm{Q} \) and \( \angle \mathrm{R} \). What type of a triangle is it?
- Construct a triangle \( \mathrm{PQR} \) in which \( \mathrm{QR}=6 \mathrm{~cm}, \angle \mathrm{Q}=60^{\circ} \) and \( \mathrm{PR}-\mathrm{PQ}=2 \mathrm{~cm} \).
- \( \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR} . \quad \) If \( \quad \mathrm{AB}+\mathrm{BC}=12 \mathrm{~cm} \) \( \mathrm{PQ}+\mathrm{QR}=15 \mathrm{~cm} \) and \( \mathrm{AC}=8 \mathrm{~cm} \), find \( \mathrm{PR} \).
- Choose the correct answer from the given four options:If in two triangles \( \mathrm{ABC} \) and \( \mathrm{PQR}, \frac{\mathrm{AB}}{\mathrm{QR}}=\frac{\mathrm{BC}}{\mathrm{PR}}=\frac{\mathrm{CA}}{\mathrm{PQ}} \), then(A) \( \triangle \mathrm{PQR} \sim \triangle \mathrm{CAB} \)(B) \( \triangle \mathrm{PQR} \sim \triangle \mathrm{ABC} \)(C) \( \triangle \mathrm{CBA} \sim \triangle \mathrm{PQR} \)(D) \( \triangle \mathrm{BCA} \sim \triangle \mathrm{PQR} \)
- \( \triangle \mathrm{PQR} \sim \triangle \mathrm{ZYX} . \quad \) If \( \mathrm{PQ}: \mathrm{ZY}=5: 3 \) and \( \mathrm{PR}=10 \mathrm{~cm} \), find \( \mathrm{ZX} \).
- In \( \triangle \mathrm{PQR}, \angle Q=90^{\circ} \) and \( \mathrm{QM} \) is a median. If \( \mathrm{PQ}=20 \) and \( Q R=21 \), find \( Q M \).
- Choose the correct answer from the given four options:If in two triangles \( \mathrm{DEF} \) and \( \mathrm{PQR}, \angle \mathrm{D}=\angle \mathrm{Q} \) and \( \angle \mathrm{R}=\angle \mathrm{E} \), then which of the following is not true?(A) \( \frac{\mathrm{EF}}{\mathrm{PR}}=\frac{\mathrm{DF}}{\mathrm{PQ}} \)(B) \( \frac{\mathrm{DE}}{\mathrm{PQ}}=\frac{\mathrm{EF}}{\mathrm{RP}} \)(C) \( \frac{\mathrm{DE}}{\mathrm{QR}}=\frac{\mathrm{DF}}{\mathrm{PQ}} \)(D) \( \frac{E F}{R P}=\frac{D E}{Q R} \)
- Name the types of following triangles:(a) Triangle with lengths of sides \( 7 \mathrm{~cm}, 8 \mathrm{~cm} \) and \( 9 \mathrm{~cm} \).(b) \( \triangle \mathrm{ABC} \) with \( \mathrm{AB}=8.7 \mathrm{~cm}, \mathrm{AC}=7 \mathrm{~cm} \) and \( \mathrm{BC}=6 \mathrm{~cm} \).(c) \( \triangle \mathrm{PQR} \) such that \( \mathrm{PQ}=\mathrm{QR}=\mathrm{PR}=5 \mathrm{~cm} \).(d) \( \triangle \mathrm{DEF} \) with \( \mathrm{m} \angle \mathrm{D}=90^{\circ} \)(e) \( \triangle \mathrm{XYZ} \) with \( \mathrm{m} \angle \mathrm{Y}=90^{\circ} \) and \( \mathrm{XY}=\mathrm{YZ} \).(f) \( \Delta \mathrm{LMN} \) with \( \mathrm{m} \angle \mathrm{L}=30^{\circ}, \mathrm{m} \angle \mathrm{M}=70^{\circ} \) and \( \mathrm{m} \angle \mathrm{N}=80^{\circ} \).
- It is given that \( \triangle \mathrm{DEF} \sim \triangle \mathrm{RPQ} \). Is it true to say that \( \angle \mathrm{D}=\angle \mathrm{R} \) and \( \angle \mathrm{F}=\angle \mathrm{P} \) ? Why?
- In Fig. 6.15, \( \angle \mathrm{PQR}=\angle \mathrm{PRQ} \), then prove that \( \angle \mathrm{PQS}=\angle \mathrm{PRT} \)"\n
- \( \triangle \mathrm{ABC} \sim \triangle \mathrm{QPR} . \) If \( \angle \mathrm{A}+\angle \mathrm{B}=130^{\circ} \) and \( \angle B+\angle C=125^{\circ} \), find \( \angle Q \).
- In Fig. 6.44, the side \( \mathrm{QR} \) of \( \triangle \mathrm{PQR} \) is produced to a point \( \mathrm{S} \). If the bisectors of \( \angle \mathrm{PQR} \) and \( \angle \) PRS meet at point \( T \), then prove that \( \angle \mathrm{QTR}=\frac{1}{2} \angle \mathrm{QPR} \)"\n
- Two sides \( \mathrm{AB} \) and \( \mathrm{BC} \) and median \( \mathrm{AM} \) of one triangle \( \mathrm{ABC} \) are respectively equal to sides \( \mathrm{PQ} \) and \( \mathrm{QR} \) and median \( \mathrm{PN} \) of \( \triangle \mathrm{PQR} \) (see Fig. 7.40). Show that:(i) \( \triangle \mathrm{ABM} \equiv \triangle \mathrm{PQN} \)(ii) \( \triangle \mathrm{ABC} \cong \triangle \mathrm{PQR} \)"\n
Kickstart Your Career
Get certified by completing the course
Get Started