- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
How to check the data frame structure without using str function in R?
To check the data frame structure without using str function in R, we can follow the below steps −
- First of all, load the data or create new data or use an in-built data set.
- Then, use glimpse function of tibble package.
Example 1
Use in-built data set
Consider the mtcars data set, load the tibble package and use glimpse function to look at the structure of mtcars data −
library(tibble) glimpse(mtcars)
Output
Rows: 32 Columns: 11 $ mpg <dbl> 21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19.2, 17.8,~ $ cyl <dbl> 6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 8,~ $ disp <dbl> 160.0, 160.0, 108.0, 258.0, 360.0, 225.0, 360.0, 146.7, 140.8, 16~ $ hp <dbl> 110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180, 180, 180~ $ drat <dbl> 3.90, 3.90, 3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92, 3.92, 3.92,~ $ wt <dbl> 2.620, 2.875, 2.320, 3.215, 3.440, 3.460, 3.570, 3.190, 3.150, 3.~ $ qsec <dbl> 16.46, 17.02, 18.61, 19.44, 17.02, 20.22, 15.84, 20.00, 22.90, 18~ $ vs <dbl> 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0,~ $ am <dbl> 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0,~ $ gear <dbl> 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3,~ $ carb <dbl> 4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4, 3, 3, 3, 4, 4, 4, 1, 2, 1, 1, 2,~
Example 2
Use in-built data set
Consider the CO2 data set, load the tibble package and use glimpse function to look at the structure of CO2 data −
library(tibble) glimpse(CO2)
Output
Rows: 84 Columns: 5 $ Plant <ord> Qn1, Qn1, Qn1, Qn1, Qn1, Qn1, Qn1, Qn2, Qn2, Qn2, Qn2, Qn2, ~ $ Type <fct> Quebec, Quebec, Quebec, Quebec, Quebec, Quebec, Quebec, Queb~ $ Treatment <fct> nonchilled, nonchilled, nonchilled, nonchilled, nonchilled, ~ $ conc <dbl> 95, 175, 250, 350, 500, 675, 1000, 95, 175, 250, 350, 500, 6~ $ uptake <dbl> 16.0, 30.4, 34.8, 37.2, 35.3, 39.2, 39.7, 13.6, 27.3, 37.1, ~
Example 3
Use in-built data set
Consider the iris data set, load the tibble package and use glimpse function to look at the structure of iris data −
library(tibble) glimpse((iris)
Output
Rows: 150 Columns: 5 $ Sepal.Length <dbl> 5.1, 4.9, 4.7, 4.6, 5.0, 5.4, 4.6, 5.0, 4.4, 4.9, 5.4, 4.~ $ Sepal.Width <dbl> 3.5, 3.0, 3.2, 3.1, 3.6, 3.9, 3.4, 3.4, 2.9, 3.1, 3.7, 3.~ $ Petal.Length <dbl> 1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1.5, 1.4, 1.5, 1.5, 1.~ $ Petal.Width <dbl> 0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.3, 0.2, 0.2, 0.1, 0.2, 0.~ $ Species <fct> setosa, setosa, setosa, setosa, setosa, setosa, setosa, s~
Example 4
Use in-built data set
Consider the sleep data set, load the tibble package and use glimpse function to look at the structure of sleep data −
library(tibble) glimpse(sleep)
Output
Rows: 20 Columns: 3 $ extra <dbl> 0.7, -1.6, -0.2, -1.2, -0.1, 3.4, 3.7, 0.8, 0.0, 2.0, 1.9, 0.8, ~ $ group <fct> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ ID <fct> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Example 5
Use in-built data set
Consider the ChickWeight data set, load the tibble package and use glimpse function to look at the structure of ChickWeight data −
library(tibble) glimpse((ChickWeight)
Output
Rows: 578 Columns: 4 $ weight <dbl> 42, 51, 59, 64, 76, 93, 106, 125, 149, 171, 199, 205, 40, 49, 5~ $ Time <dbl> 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 1~ $ Chick <ord> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, ~ $ Diet <fct> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ~
Example 6
Use in-built data set
Consider the DNase data set, load the tibble package and use glimpse function to look at the structure of DNase data −
library(tibble) glimpse((DNase)
Output
Rows: 176 Columns: 3 $ Run <ord> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2,~ $ conc <dbl> 0.04882812, 0.04882812, 0.19531250, 0.19531250, 0.39062500, 0.~ $ density <dbl> 0.017, 0.018, 0.121, 0.124, 0.206, 0.215, 0.377, 0.374, 0.614,~
Example 7
Use in-built data set
Consider the Nile data set, load the tibble package and use glimpse function to look at the structure of Nile data −
library(tibble) glimpse(Nile)
Output
Time-Series [1:100] from 1871 to 1970: 1120 1160 963 1210 1160 1160 813 1230 1370 1140 …
Example 8
Use in-built data set
Consider the HairEyeColor data set, load the tibble package and use glimpse function to look at the structure of HairEyeColor data −
library(tibble) glimpse(HairEyeColor)
Output
‘table’ num [1:4, 1:4, 1:2] 32 53 10 3 11 50 10 30 10 25 … - attr(*, “dimnames”)=List of 3 ..$ Hair: chr [1:4] “Black” “Brown” “Red” “Blond” ..$ Eye : chr [1:4] “Brown” “Blue” “Hazel” “Green” ..$ Sex : chr [1:2] “Male” “Female”
Example 9
Use in-built data set
Consider the Indometh data set, load the tibble package and use glimpse function to look at the structure of Indometh data −
library(tibble) glimpse(Indometh)
Output
Rows: 66 Columns: 3 $ Subject <ord> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,~ $ time <dbl> 0.25, 0.50, 0.75, 1.00, 1.25, 2.00, 3.00, 4.00, 5.00, 6.00, 8.~ $ conc <dbl> 1.50, 0.94, 0.78, 0.48, 0.37, 0.19, 0.12, 0.11, 0.08, 0.07, 0.~
Example 10
Use in-built data set
Consider the AirPassengers data set, load the tibble package and use glimpse function to look at the structure of AirPassengers data −
library(tibble) glimpse(AirPassengers)
Output
Time-Series [1:144] from 1949 to 1961: 112 118 132 129 121 135 148 148 136 119 ...
- Related Articles
- How to preserve data frame structure after applying a function in R?
- How to subset rows of data frame without NA using dplyr in R?
- How to subset rows of an R data frame using grepl function?
- How to create a subset of a data frame in R without using column names?
- How to combine multiple columns into one in R data frame without using column names?
- How to create a clone of a data frame in R without data values?
- How to use pnorm function on data frame columns in R?
- How to create bar plot using ggplot2 with structure data frame?
- How to sort an R data frame column without losing row names?
- How to create scatterplot using data frame columns in R?
- How to check whether a data frame exists or not in R?
- How to check whether a column exists in an R data frame?
- How to check if a column is categorical in R data frame?
- How to check which value is NA in an R data frame?
- How to convert first letter into capital in single column R data frame using a function?
