- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
How to use pnorm function on data frame columns in R?
The pnorm function is used to find the probability for a normally distributed random variable. Probabilities such as less than mean, greater than mean, or probability between left- and right-hand side of the mean. If we want to use pnorm function on data frame columns then apply function can help us.
Consider the below data frame −
Example
x1<-rnorm(20,5,0.35) x2<-rnorm(20,5,0.67) x3<-rnorm(20,5,0.04) df1<-data.frame(x1,x2,x3) df1
Output
x1 x2 x3 1 4.556392 5.973934 5.018973 2 5.217397 4.932053 4.975870 3 5.426464 4.932799 4.962231 4 4.930645 5.297919 5.017925 5 4.773804 4.768619 4.943131 6 4.963782 4.569909 4.950701 7 4.925481 5.329717 4.985630 8 4.940240 5.871122 5.007031 9 4.904643 5.270739 5.022102 10 4.652542 5.784937 5.005462 11 5.089297 4.479673 4.961000 12 5.619575 4.181733 4.983067 13 4.696906 4.451156 4.931908 14 5.177524 4.422826 5.052467 15 5.186783 5.184310 5.015104 16 4.497172 5.241887 4.996715 17 4.689212 5.252937 5.035001 18 5.385772 4.095684 5.035014 19 5.455497 5.142272 5.021073 20 5.417301 5.025720 5.005374
Applying pnorm on columns in df1 −
Example
apply(df1,2,function(x) pnorm(x,mean=mean(x),sd=sd(x)))
Output
x1 x2 x3 [1,] 0.07616627 0.96450889 0.75138999 [2,] 0.72115750 0.44156102 0.27056837 [3,] 0.88960525 0.44211276 0.15403922 [4,] 0.38629544 0.70493965 0.74135388 [5,] 0.22132609 0.32516348 0.05581552 [6,] 0.42550072 0.20448316 0.08623025 [7,] 0.38027932 0.72516490 0.37486428 [8,] 0.39754810 0.94661794 0.62607863 [9,] 0.35630529 0.68712704 0.78009609 [10,] 0.12759048 0.92666438 0.60816173 [11,] 0.57741133 0.15991056 0.14545675 [12,] 0.96515143 0.06018775 0.34616630 [13,] 0.15806523 0.14725726 0.02700442 [14,] 0.67888286 0.13536904 0.95364621 [15,] 0.68893707 0.62769115 0.71330952 [16,] 0.05346986 0.66772918 0.50508628 [17,] 0.15246286 0.67521495 0.87668128 [18,] 0.86438253 0.04322155 0.87676402 [19,] 0.90541682 0.59753060 0.77087289 [20,] 0.88424194 0.51137989 0.60714737
Example
y1<-rpois(20,5) y2<-rpois(20,2) y3<-rpois(20,2) y4<-rpois(20,5) y5<-rpois(20,10) df2<-data.frame(y1,y2,y3,y4,y5) df2
Output
y1 y2 y3 y4 y5 1 7 4 3 3 10 2 7 2 2 5 6 3 2 1 4 4 11 4 5 1 2 6 13 5 6 2 3 9 10 6 7 4 4 4 7 7 5 3 2 7 15 8 2 1 1 3 15 9 3 1 2 4 9 10 4 3 1 4 15 11 1 4 4 4 13 12 5 6 4 8 9 13 3 0 5 2 14 14 7 2 1 8 7 15 6 3 4 5 10 16 3 2 2 6 19 17 4 1 5 5 11 18 7 2 1 5 11 19 6 1 2 9 9 20 3 3 4 3 9
Applying pnorm on columns in df2 −
Example
apply(df2,2,function(x) pnorm(x,mean=mean(x),sd=sd(x)))
Output
y1 y2 y3 y4 y5 [1,] 0.88543697 0.87874297 0.55840970 0.14362005 0.36298572 [2,] 0.88543697 0.41829947 0.27834877 0.46146443 0.05825608 [3,] 0.08752759 0.18573275 0.81101173 0.28079874 0.48176830 [4,] 0.57107536 0.18573275 0.27834877 0.65061458 0.71356535 [5,] 0.75517414 0.41829947 0.55840970 0.96698029 0.36298572 [6,] 0.88543697 0.87874297 0.81101173 0.28079874 0.10296979 [7,] 0.57107536 0.68482707 0.27834877 0.80804251 0.87967779 [8,] 0.08752759 0.18573275 0.09300983 0.14362005 0.87967779 [9,] 0.19922632 0.18573275 0.27834877 0.28079874 0.25614928 [10,] 0.36970390 0.68482707 0.09300983 0.28079874 0.87967779 [11,] 0.03088880 0.87874297 0.81101173 0.28079874 0.71356535 [12,] 0.57107536 0.99451570 0.81101173 0.91220051 0.25614928 [13,] 0.19922632 0.05691416 0.94698775 0.06082067 0.80746817 [14,] 0.88543697 0.41829947 0.09300983 0.91220051 0.10296979 [15,] 0.75517414 0.68482707 0.81101173 0.46146443 0.36298572 [16,] 0.19922632 0.41829947 0.27834877 0.65061458 0.99163233 [17,] 0.36970390 0.18573275 0.94698775 0.46146443 0.48176830 [18,] 0.88543697 0.41829947 0.09300983 0.46146443 0.48176830 [19,] 0.75517414 0.18573275 0.27834877 0.96698029 0.25614928 [20,] 0.19922632 0.68482707 0.81101173 0.14362005 0.25614928
- Related Articles
- How to select data frame columns based on their class in R?
- How to standardize columns in an R data frame?
- How to standardize selected columns in R data frame?
- How to subset row values based on columns name in R data frame?
- How to apply a manually created function to two columns in an R data frame?
- How to add name to data frame columns in R?
- How to reorder the columns in an R data frame?
- How to subset factor columns in an R data frame?
- How to concatenate numerical columns in an R data frame?
- How to create scatterplot using data frame columns in R?
- How to standardize columns if some columns are categorical in R data frame?
- How to subset rows based on criterion of multiple numerical columns in R data frame?
- How to create a subset of an R data frame based on multiple columns?
- How to extract data frame columns stored in a list in R?
- Find the mean of multiple columns based on multiple grouping columns in R data frame.

Advertisements