- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Cross Correlation Function and its Properties
Cross Correlation Function
The cross correlation function between two different signals is defined as the measure of similarity or coherence between one signal and the time delayed version of another signal.
The cross correlation function is defined separately for energy (or aperiodic) signals and power or periodic signals.
Cross Correlation of Energy Signals
Consider two energy signals $\mathit{x_{\mathrm{1}}}\mathrm{(\mathit{t})}$ and $\mathit{x_{\mathrm{2}}}\mathrm{(\mathit{t})}$. The cross correlation of these two energy signals is defined as −
$$\mathit{R_{\mathrm{12}}}\mathrm{(\tau)}\:\mathrm{=}\:\int_{-\infty}^{\infty}\mathit{x_{\mathrm{1}}}\mathrm{(\mathit{t})}x_{\mathrm{2}}^{*}\mathrm{(\mathit{t-\tau})}\mathit{dt} \:\mathrm{=}\: \int_{-\infty}^{\infty}\mathit{x_{\mathrm{1}}}\mathrm{(\mathit{t+\tau})}\mathit{x_\mathrm{2}^*}\mathrm{(\mathit{t})}\mathit{dt}$$
Where, the variable $\tau$ is called the delay parameter or scanning parameter or searching parameter.
The cross correlation of two energy signals is defined in another form as −
$$\mathit{R_{\mathrm{12}}}\mathrm{(\mathit{\tau})} \:\mathrm{=}\: \int_{-\infty}^{\infty}\mathit{x_\mathrm{2}}\mathrm{(t)}\mathit{x_\mathrm{1}^*}\mathrm{(t-\tau)}\:\mathit{dt}$$
Properties of Cross Correlation Function for Energy Signals
The properties of cross correlation function for energy signals are given as follows −
Property 1
The cross correlation functions of energy signals exhibit conjugate symmetry property, that is,
$$\mathit{R_\mathrm{12}}\mathrm{(\mathit{\tau})}\:\mathrm{=}\:\mathit{R_\mathrm{21}^*}\mathrm{(-\tau)}$$
Property 2
The cross correlation functions of energy signals are not in general commutative, i.e.,
$$\mathit{R_\mathrm{12}}\mathrm{(\mathit{\tau})}\:\mathrm{
eq}\:\mathit{R_\mathrm{21}}\mathrm{(-\tau)}$$
Property 3
If,
$$\mathit{R_\mathrm{12}}\mathrm{(0)}\:\mathrm{=}\:\int_{-\infty}^{\infty}\mathit{x_\mathrm{1}}\mathrm{(\mathit{t})}\mathit{x_\mathrm{2}^*}\mathrm{(\mathit{t})}\mathit{dt}\:\mathrm{=}\:\mathrm{0}$$
Then, the two energy signals $\mathit{x_{\mathrm{1}}}\mathrm{(\mathit{t})}$ and $\mathit{x_{\mathrm{2}}}\mathrm{(\mathit{t})}$ are said to be orthogonal signals over the entire time interval. The cross correlation of orthogonal signals is zero.
Property 4
The cross correlation of two energy signals is equivalent to the product of the Fourier transform of one signal and the complex conjugate of Fourier transform of another signal, i.e.,
$$\mathit{R_\mathrm{12}}\mathrm{(\tau)}\:\leftrightarrow\:\mathit{X_\mathrm{1}}\mathrm(\omega).\mathit{X_\mathrm{2}^*}\mathrm{(\mathit{\omega})}$$
This property of cross correlation is known as correlation theorem.
Cross Correlation of Power Signals
Consider two power (or periodic) signals $\mathit{x_{\mathrm{1}}}\mathrm{(\mathit{t})}$ and $\mathit{x_{\mathrm{2}}}\mathrm{(\mathit{t})}$ having the same time period (say T), then the cross correlation of these two power signals is defined as,
$$\mathit{R_\mathrm{21}}\mathrm{(\mathit{\tau})}\:\mathrm{=}\:\frac{\mathrm{1}}{\mathit{T}}\int_{-\mathrm{(\mathit{T}\diagup2)}}^{\mathrm{(\mathit{T}\diagup2)}}\mathit{x_\mathrm{1}}\mathrm{(\mathit{t})}\mathit{x_\mathrm{2}^*}\mathrm{(\mathit{t-\tau})}\mathit{dt}$$
The cross correlation of two periodic functions is defined in another form as −
$$\mathit{R_\mathrm{21}}\mathrm{(\tau)}\:\mathrm{=}\:\frac{\mathrm{1}}{\mathit{T}}\int_{-\mathrm{(\mathit{T}/\mathrm{2})}}^{\mathrm{(\mathit{T/\mathrm{2}})}}\mathit{x_\mathrm{2}}\mathrm{(\mathit{t})}\:\mathit{x_\mathrm{1}^*}\mathrm{(\mathit{t-\tau})}\:\mathit{dt}$$
Where, the variable $\tau$ is called the delay parameter.
Properties of Cross Correlation Function for Power Signals
The properties of cross correlation for power signals are given as follows −
Property 1
The cross correlation of two power signals exhibits complex conjugate symmetry, i.e.,
$$\mathit{R_\mathrm{12}}\mathrm{(\mathit{\tau})}\:\mathrm{=}\:\mathit{R_\mathrm{21}^*}\mathrm{(-\tau)}$$
Property 2
The cross correlation of two power signals is not commutative, that is,
$$\mathit{R_\mathrm{12}}\mathrm{(\mathit{\tau})}\:\mathrm{
eq}\:\mathit{R_\mathrm{21}}\mathrm{(-\tau)}$$
Property 3
The cross correlation function of two power signals is equivalent to the multiplication of Fourier transform of one signal and the complex conjugate of Fourier transform of the other signal, i.e.,
$$\mathit{R_\mathrm{12}}\mathrm{(\tau)}\:\leftrightarrow\:\mathit{X_\mathrm{1}}\mathrm{(\omega)}.\mathit{X_\mathrm{2}^*}\mathrm{(\omega)}$$
Property 4
If,
$$\mathit{R_\mathrm{12}}\mathrm{(0)}\:\mathrm{=}\:\lim_{T \rightarrow \infty}\frac{\mathrm{1}}{\mathit{T}}\int_{-\mathrm{(T/\mathrm{2})}}^{\mathrm{(T/\mathrm{2})}}\mathit{x_\mathrm{1}}\mathrm{(t)}\:\mathit{x_\mathrm{2}^*}\mathrm{(\mathit{t})}\mathit{dt}\:\mathrm{=}\:\mathrm{0}$$
Then, the two power signals $\mathit{x_{\mathrm{1}}}\mathrm{(\mathit{t})}$ and $\mathit{x_{\mathrm{2}}}\mathrm{(\mathit{t})}$ are called the orthogonal signals over the entire time interval.
- Related Articles
- Autocorrelation Function and its Properties
- Detection of Periodic Signals in the Presence of Noise (by Cross-Correlation)
- Correlation and Regression in Python
- Difference between Covariance and Correlation
- How to create an object and access its properties in JavaScript?
- Correlation Between Categorical and Continuous Variables
- What is a triangle? Explain its properties.
- Signals and Systems – Relation between Convolution and Correlation
- What is meant by the congruence of the triangle and its properties?
- strchr() function in C++ and its applications
- What is Correlation in Signals and Systems?
- What is type 3 grammar? Explain its properties
- What is plasma and what is its function?
- How to extract correlation coefficient value from correlation test in R?
- What is the relationship between correlation and covariance?
