- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
What is Correlation in Signals and Systems?
What is Correlation?
The correlation of two functions or signals or waveforms is defined as the measure of similarity between those signals. There are two types of correlations −
Cross-correlation
Autocorrelation
Cross-correlation
The cross-correlation between two different signals or functions or waveforms is defined as the measure of similarity or coherence between one signal and the time-delayed version of another signal. The cross-correlation between two different signals indicates the degree of relatedness between one signal and the time-delayed version of another signal.
The cross-correlation of energy (or aperiodic) signals and power (or periodic) signals is defined separately.
Cross-correlation of Energy Signals
Consider two complex signals $\mathit{x_{\mathrm{1}}\mathrm{\left ( \mathit{t} \right )}}$ and $\mathit{x_{\mathrm{2}}\mathrm{\left ( \mathit{t} \right )}}$ of finite energy. Then, the cross-correlation of these two energy signals is defined as
$$\mathrm{\mathit{R_{\mathrm{12}}\mathrm{\left(\tau\right )}\mathrm{=}\int_{-\infty }^{\infty }x_{\mathrm{1}}\mathrm{\left ( \mathit{t}\right)}x_{\mathrm{2}}^{*}\mathrm{\left( \mathit{t-\tau }\right )}dt}\:\mathrm{=}\:\int_{-\infty }^{\infty }\mathit{x}_{\mathrm{1}}\mathrm{\left(\mathit{t+\tau }\right )}\mathit{x}_{\mathrm{2}}^{*}\mathrm{\left(\mathit{t}\right)}\:\mathit{dt}}$$
If the two signals $\mathit{\mathit{x}_{\mathrm{1}}\mathrm{\left ( \mathit{t} \right )}}$ and $\mathit{\mathit{x}_{\mathrm{2}}\mathrm{\left ( \mathit{t} \right )}}$ are real, then the cross-correlation between them is,
$$\mathrm{\mathit{R_{\mathrm{12}}\mathrm{\left(\tau\right )}\mathrm{=}\int_{-\infty }^{\infty }x_{\mathrm{1}}\mathrm{\left ( \mathit{t}\right)}x_{\mathrm{2}}\mathrm{\left( \mathit{t-\tau }\right )}dt}\:\mathrm{=}\:\int_{-\infty }^{\infty }\mathit{\mathit{x}}_{\mathrm{1}}\mathrm{\left(\mathit{t+\tau} \right )}\mathit{x}_{\mathrm{2}}\mathrm{\left(\mathit{t}\right)}\:\mathit{dt}}$$
If the energy signals $\mathit{x_{\mathrm{1}}\mathrm{\left ( \mathit{t} \right )}}$ and $\mathit{x_{\mathrm{2}}\mathrm{\left ( \mathit{t} \right )}}$ have some similarity. Then, the cross-correlation $\mathit{R_{\mathrm{12}}\mathrm{\left(\tau\right )}}$ between them will have some finite value over the range $\tau$. The variable $\tau$ is called the delay parameter or searching parameter or scanning parameter. The time-delay parameter ($\tau$) is the time delay or time shift of one of the two signals. This delay parameter $\tau$ determines the correlation between two signals.
Cross-correlation of Power Signals
The cross-correlation $\mathit{R_{\mathrm{12}}\mathrm{\left(\tau\right )}}$ for two power (or periodic) signals $\mathit{x_{\mathrm{1}}\mathrm{\left ( \mathit{t} \right )}}$ and $\mathit{x_{\mathrm{2}}\mathrm{\left ( \mathit{t} \right )}}$ may be defined using the average form of correlation. If two power signals $\mathit{x_{\mathrm{1}}\mathrm{\left ( \mathit{t} \right )}}$ and $\mathit{x_{\mathrm{2}}\mathrm{\left ( \mathit{t} \right )}}$ have the same time period (say T), then the cross-correlation between them is defined as follows −
$$\mathrm{\mathit{R_{\mathrm{12}}\mathrm{\left(\tau\right )}\mathrm{=}\frac{\mathrm{1}}{\mathit{T}}\int_{-\mathrm{\left (\mathit{T/\mathrm{2}}\right )}}^{\mathrm{\left(\mathit{T/\mathrm{2}}\right)}}x_{\mathrm{1}}\mathrm{\left ( \mathit{t}\right)}x_{\mathrm{2}}^{*}\mathrm{\left( \mathit{t-\tau }\right )}\:dt}}$$
Autocorrelation
The autocorrelation function is defined as the measure of similarity or coherence between a signal and its time delayed version. Therefore, the autocorrelation is the correlation of a signal with itself.
Like cross-correlation, autocorrelation is also defined separately for energy (or aperiodic) signals and power (periodic) signals.
Autocorrelation of Energy Signals
The autocorrelation of an energy or aperiodic signal $\mathit{x\mathrm(\mathit{t})}$ is defined as −
$$\mathrm{\mathit{R_{\mathrm{11}}\mathrm{\left(\tau\right )}\:\mathrm{=}\:R\mathrm{\left ( \tau \right )}\:\mathrm{=}\int_{-\infty }^{\infty }\:x\mathrm{\left ( \mathit{t}\right)}x^{\mathrm{*}}\mathrm{\left( \mathit{t-\tau }\right )}\:dt}}$$
Where, the variable $\tau$ is called the delay parameter and here, the signal $\mathit{x\mathrm(\mathit{t})}$ is time shifted by $\tau$ units in the positive direction.
If the signal $\mathit{x\mathrm(\mathit{t})}$ is shifted by $\tau$ units in negative direction, then the autocorrelation of the signal is defined as,
$$\mathrm{\mathit{R_{\mathrm{11}}\mathrm{\left(\tau\right )}\:\mathrm{=}\:R\mathrm{\left ( \tau \right )}\:\mathrm{=}\int_{-\infty }^{\infty }\:x\mathrm{\left ( \mathit{t+\tau }\right)}x^{\mathrm{*}}\mathrm{\left( \mathit{t}\right )}\:dt}}$$
Autocorrelation of Power Signals
The autocorrelation of a power signal or periodic signal $\mathit{x\mathrm(\mathit{t})}$ having a time period T is defined as,
$$\mathrm{\mathit{R\mathrm{\left(\tau\right )}\mathrm{=}\displaystyle \lim_{\mathrm{T} \to \infty }\frac{\mathrm{1}}{\mathit{T}}\int_{-\mathrm{\left (\mathit{T/\mathrm{2}}\right )}}^{\mathrm{\left(\mathit{T/\mathrm{2}}\right)}}x\mathrm{\left ( \mathit{t}\right)}x^{*}\mathrm{\left( \mathit{t-\tau }\right )}\:dt}}$$
- Related Articles
- Signals and Systems – Relation between Convolution and Correlation
- What is Convolution in Signals and Systems?
- Signals and Systems – What is Even Symmetry?
- Signals and Systems – What is Odd Symmetry?
- Signals and Systems – What is Half Wave Symmetry?
- Signals and Systems – What is Quarter Wave Symmetry?
- Signals and Systems – What is a Linear System?
- Signals and Systems – What is Inverse Z-Transform?
- Signals & Systems – What is Hilbert Transform?
- Signals and Systems – Classification of Signals
- Signals and Systems: Multiplication of Signals
- Signals and Systems: Even and Odd Signals
- Signals and Systems: Periodic and Aperiodic Signals
- Signals and Systems: Energy and Power Signals
- Signals and Systems: Classification of Systems
