C++ Program to Check the Connectivity of Undirected Graph Using BFS

C++Server Side ProgrammingProgramming

To check connectivity of a graph, we will try to traverse all nodes using any traversal algorithm. After completing the traversal, if there is any node, which is not visited, then the graph is not connected.

For the undirected graph, we will select one node and traverse from it.

In this case the traversal algorithm is recursive BFS traversal.

Input − Adjacency matrix of a graph

01100
10110
11011
01101
00110

Output − The Graph is connected.

Algorithm

traverse(s, visited)

Input − The start node s and the visited node to mark which node is visited.

Output − Traverse all connected vertices.

Begin
   mark s as visited
   insert s into a queue Q
   until the Q is not empty, do
   u = node that is taken out from the queue
   for each node v of the graph, do
      if the u and v are connected, then
         if u is not visited, then
            mark u as visited
            insert u into the queue Q.
      done
   done
End

isConnected(graph)

Input − The graph.

Output − True if the graph is connected.

Begin
   define visited array
   for all vertices u in the graph, do
      make all nodes unvisited
      traverse(u, visited)
      if any unvisited node is still remaining, then
         return false
   done
   return true
End

Example Code (C++)

 Live Demo

#include<iostream>
#include<queue>
#define NODE 5
using namespace std;
int graph[NODE][NODE] = {
   {0, 1, 1, 0, 0},
   {1, 0, 1, 1, 0},
   {1, 1, 0, 1, 1},
   {0, 1, 1, 0, 1},
   {0, 0, 1, 1, 0}};
void traverse(int s, bool visited[]) {
   visited[s] = true; //mark v as visited
   queue<int> que;
   que.push(s);//insert s into queue
   while(!que.empty()) {
      int u = que.front(); //delete from queue and print
      que.pop();
      for(int i = 0; i < NODE; i++) {
         if(graph[i][u]) {
            //when the node is non-visited
            if(!visited[i]) {
               visited[i] = true;
               que.push(i);
            }
         }
      }
   }
}
bool isConnected() {
   bool *vis = new bool[NODE];
   //for all vertex u as start point, check whether all nodes are visible or not
   for(int u; u < NODE; u++) {
      for(int i = 0; i < NODE; i++)
         vis[i] = false; //initialize as no node is visited
         traverse(u, vis);
      for(int i = 0; i < NODE; i++) {
         if(!vis[i]) //if there is a node, not visited by traversal, graph is not connected
            return false;
      }
   }
   return true;
}
int main() {
   if(isConnected())
      cout << "The Graph is connected.";
   else
      cout << "The Graph is not connected.";
}

Output

The Graph is connected.
raja
Published on 27-Mar-2019 17:19:39
Advertisements