
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Found 26504 Articles for Server Side Programming

700 Views
The equals() function is used to check if two dataframes are exactly same. At first, let us create DataFrame1 with two columns −dataFrame1 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Bentley', 'Jaguar'], "Units": [100, 150, 110, 80, 110, 90] } )Create DataFrame2 with two columns −dataFrame2 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Mercedes', 'Jaguar'], "Reg_Price": [7000, 1500, 5000, 8000, 9000, 6000] ... Read More

6K+ Views
To count unique values per groups in Python Pandas, we can use df.groupby('column_name').count().StepsCreate a two-dimensional, size-mutable, potentially heterogeneous tabular data, df.Print the input DataFrame, df.Use df.groupby('rank')['id'].count() to find the count of unique values per groups and store it in a variable "count".Print the count from Step 3.Exampleimport pandas as pd df = pd.DataFrame( { "id": [1, 2, 1, 3, 5, 1, 4, 3, 6, 7], 'rank': [1, 4, 1, 2, 1, 4, 6, 1, 5, 3] } ) print"Input DataFrame 1 is:", df count = df.groupby('rank')['id'].count() print"Frequency of ranks:", countOutputInput DataFrame 1 is: id rank 0 1 1 1 2 4 2 1 1 3 3 2 4 5 1 5 1 4 6 4 6 7 3 1 8 6 5 9 7 3 Frequency of ranks: rank 1 4 2 1 3 1 4 2 5 1 6 1 Name: id, dtype: int64

792 Views
To find the difference between two DataFrame, you need to check for its equality. Also, check the equality of columns.Let us create DataFrame1 with two columns −dataFrame1 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Bentley', 'Jaguar'], "Units": [100, 150, 110, 80, 110, 90] } )Create DataFrame2 with two columns −dataFrame2 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Bentley', 'Jaguar'], "Units": [100, 150, 110, 80, 110, 90] } ... Read More

6K+ Views
To find group-by and sum in Python Pandas, we can use groupby(columns).sum().StepsCreate a two-dimensional, size-mutable, potentially heterogeneous tabular data, df.Print the input DataFrame, df.Find the groupby sum using df.groupby().sum(). This function takes a given column and sorts its values. After that, based on the sorted values, it also sorts the values of other columns.Print the groupby sum.Exampleimport pandas as pd df = pd.DataFrame( { "Apple": [5, 2, 7, 0], "Banana": [4, 7, 5, 1], "Carrot": [9, 3, 5, 1] } ) print "Input DataFrame 1 ... Read More

292 Views
To create a subset of columns, we can use filter(). Through this, we can filter column values with similar pattern using like operator. At first, let us create a DataFrame with 3 columns −dataFrame = pd.DataFrame({"Product": ["SmartTV", "ChromeCast", "Speaker", "Earphone"], "Opening_Stock": [300, 700, 1200, 1500], "Closing_Stock": [200, 500, 1000, 900]})Now, let us create a subset with multiple columns −dataFrame[['Opening_Stock', 'Closing_Stock']]Create a subset with similarly patterned names −dataFrame.filter(like='Open')ExampleFollowing is the complete code −import pandas as pd dataFrame = pd.DataFrame({"Product": ["SmartTV", "ChromeCast", "Speaker", "Earphone"], "Opening_Stock": [300, 700, 1200, 1500], "Closing_Stock": [200, 500, 1000, 900]}) print"DataFrame...", dataFrame print"Displaying a subset ... Read More

12K+ Views
To get column index from column name in Python Pandas, we can use the get_loc() method.Steps −Create a two-dimensional, size-mutable, potentially heterogeneous tabular data, df.Print the input DataFrame, df.Find the columns of DataFrame, using df.columns.Print the columns from Step 3.Initialize a variable column_name.Get the location, i.e., of index for column_name.Print the index of the column_name.Example −import pandas as pd df = pd.DataFrame( { "x": [5, 2, 7, 0], "y": [4, 7, 5, 1], "z": [9, 3, 5, 1] } ) print"Input DataFrame 1 is:", df columns = ... Read More

116 Views
When it is required to construct equi-digit tuples, the ‘//’ operator and the list slicing is used.ExampleBelow is a demonstration of the samemy_list = [5613, 1223, 966143, 890, 65, 10221] print("The list is :") print(my_list) my_result = [] for sub in my_list: mid_index = len(str(sub)) // 2 element_1 = str(sub)[:mid_index] element_2 = str(sub)[mid_index:] my_result.append((int(element_1), int(element_2))) print("The resultant list is :") print(my_result)OutputThe list is : [5613, 1223, 966143, 890, 65, 10221] The resultant list is : [(56, 13), (12, 23), (966, 143), (8, 90), ... Read More

195 Views
When it is required to omit K length rows, a simple iteration and the ‘len’ method along with ‘append’ method are used.ExampleBelow is a demonstration of the samemy_list = [[41, 7], [8, 10, 12, 8], [10, 11], [6, 82, 10]] print("The list is :") print(my_list) my_k = 2 print("The value of K is ") print(my_k) my_result = [] for row in my_list: if len(row) != my_k : my_result.append(row) print("The resultant list is :") print(my_result)OutputThe list is : [[41, 7], [8, 10, 12, 8], [10, 11], [6, ... Read More

112 Views
When it is required to extract rows with common difference elements, an iteration and a flag value is used.ExampleBelow is a demonstration of the samemy_list = [[31, 27, 10], [8, 11, 12], [11, 12, 13], [6, 9, 10]] print("The list is :") print(my_list) my_result = [] for row in my_list: temp = True for index in range(0, len(row) - 1): if row[index + 1] - row[index] != row[1] - row[0]: temp = False ... Read More

320 Views
When it is required to compute a polynomial equation, a simple iteration along with the ‘*’ operator is used.ExampleBelow is a demonstration of the samemy_list = [3, -6, 3, -1, 23, -11, 0, -8] print("The list is :") print(my_list) x = 3 my_list_length = len(my_list) my_result = 0 for i in range(my_list_length): my_sum = my_list[i] for j in range(my_list_length - i - 1): my_sum = my_sum * x my_result = my_result + my_sum print("The result is :") print(my_result)OutputThe list ... Read More