Python Articles - Page 438 of 1048

Python - How to Count the NaN Occurrences in a Column in Pandas Dataframe?

AmitDiwan
Updated on 01-Oct-2021 11:45:18

852 Views

To count the NaN occurrences in a column, use the isna(). Use the sum() to add the values and find the count.At first, let us import the required libraries with their respective aliases −import pandas as pd import numpy as npCreate a DataFrame. We have set the NaN values using the Numpy np.inf in “Units_Sold” column −dataFrame = pd.DataFrame({"Car": ['BMW', 'Lexus', 'Tesla', 'Mustang', 'Mercedes', 'Jaguar'], "Cubic_Capacity": [2000, 1800, 1500, 2500, 2200, 3000], "Reg_Price": [7000, 1500, 5000, 8000, 9000, 6000], "Units_Sold": [ 100, np.NaN, 150, np.NaN, 200, np.NaN] })Count NaN values from column "Units_Sold" −dataFrame["Units_Sold"].isna().sum() ExampleFollowing is the code −import pandas ... Read More

Python Pandas – Merge DataFrame with one-to-one relation

AmitDiwan
Updated on 01-Oct-2021 11:40:15

1K+ Views

To merge Pandas DataFrame, use the merge() function. The one-to-one relation is implemented on both the DataFrames by setting under the “validate” parameter of the merge() function i.e. −validate = “one-to-one” or validate = “1:1”The one-to-many relation checks if merge keys are unique in both left and right dataset.At first, let us create our 1st DataFrame −dataFrame1 = pd.DataFrame(    {       "Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Bentley', 'Jaguar'], "Units": [100, 150, 110, 80, 110, 90] } )Now, let us create our 2nd DataFrame −dataFrame2 = pd.DataFrame(    {       "Car": ['BMW', 'Lexus', ... Read More

Python Pandas – Propagate non-null values forward

AmitDiwan
Updated on 01-Oct-2021 11:35:29

704 Views

Use the “method” parameter of the fillna() method. For forward fill, use the value ‘ffill’ as shown below −fillna(method='ffill')Let’s say the following is our CSV file opened in Microsoft Excel with some NaN values −At first, import the required library −import pandas as pd Load data from a CSV file into a Pandas DataFrame −dataFrame = pd.read_csv("C:\Users\amit_\Desktop\SalesData.csv")ExampleFollowing is the complete code −import pandas as pd # Load data from a CSV file into a Pandas DataFrame dataFrame = pd.read_csv("C:\Users\amit_\Desktop\SalesData.csv") print("DataFrame...", dataFrame) # propagate non null values forward res = dataFrame.fillna(method='ffill') print("DataFrame after forward fill...", res)OutputThis will produce the ... Read More

Plot the dataset to display Downtrend – Python Pandas

AmitDiwan
Updated on 01-Oct-2021 11:31:19

112 Views

Downward pattern displayed by Time Series Analysis is what we call Downtrend. Let’s say the following is our dataset i.e. SalesRecords2.csvAt first, import the required libraries −import pandas as pd import matplotlib.pyplot as pltLoad data from a CSV file into a Pandas DataFrame −dataFrame = pd.read_csv("C:\Users\amit_\Desktop\SalesRecords2.csv") Casting column to datetime object −dataFrame['Sold_On'] = pd.to_datetime(dataFrame['Sold_On'])Create the plot for downtrend −dataFrame.plot() ExampleFollowing is the code −import pandas as pd import matplotlib.pyplot as plt # Load data from a CSV file into a Pandas DataFrame dataFrame = pd.read_csv("C:\Users\amit_\Desktop\SalesRecords2.csv") print("Reading the CSV file...", dataFrame) # casting column to datetime object dataFrame['Sold_On'] = ... Read More

Plot the dataset to display Uptrend – Python Pandas

AmitDiwan
Updated on 01-Oct-2021 11:27:48

173 Views

Upward pattern displayed by Time Series Analysis is what we call Uptrend. Let’s say the following is our dataset i.e. SalesRecords.csvAt first, import the required libraries −import pandas as pd import matplotlib.pyplot as pltLoad data from a CSV file into a Pandas DataFrame −dataFrame = pd.read_csv("C:\Users\amit_\Desktop\SalesRecords.csv")Casting column to datetime object −dataFrame['Date_of_Purchase'] = pd.to_datetime(dataFrame['Date_of_Purchase'])Create the plot for uptrend −dataFrame.plot()ExampleFollowing is the code −import pandas as pd import matplotlib.pyplot as plt # Load data from a CSV file into a Pandas DataFrame dataFrame = pd.read_csv("C:\Users\amit_\Desktop\SalesRecords.csv") print("Reading the CSV file...", dataFrame) # casting column to datetime object dataFrame['Date_of_Purchase'] = pd.to_datetime(dataFrame['Date_of_Purchase']) ... Read More

Create a Pipeline and remove a row from an already created DataFrame - Python Pandas

AmitDiwan
Updated on 01-Oct-2021 11:22:19

366 Views

Use the ValDrop() method of pdpipe library to remove a row from an already create Pandas DataFrame. At first, import the required pdpipe and pandas libraries with their respective aliases −import pdpipe as pdp import pandas as pdLet us create a DataFrame. Here, we have two columns −dataFrame = pd.DataFrame(    {       "Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Bentley', 'Jaguar'], "Units": [100, 150, 110, 80, 110, 90] } )Now, remove a row using valdDrop() method −dataFrame = pdp.ValDrop(['Jaguar'], 'Car').apply(dataFrame) ExampleFollowing is the complete code −import pdpipe as pdp import pandas as pd # function ... Read More

Plot a Line Graph for Pandas Dataframe with Matplotlib?

AmitDiwan
Updated on 19-Oct-2021 08:50:42

8K+ Views

We will plot a line grapg for Pandas DataFrame using the plot(). At first, import the required libraries −import pandas as pd import matplotlib.pyplot as pltCreate a DataFrame −dataFrame = pd.DataFrame(    {       "Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Bentley', 'Jaguar'], "Reg_Price": [2000, 2500, 2800, 3000, 3200, 3500], "Units": [100, 120, 150, 170, 180, 200] } )Plot a line graph with both the columns −plt.plot(dataFrame["Reg_Price"], dataFrame["Units"])ExampleFollowing is the code −import pandas as pd import matplotlib.pyplot as plt # creating a DataFrame with 2 columns dataFrame = pd.DataFrame(    {       "Car": ['BMW', ... Read More

Python - Plot a Pie Chart for Pandas Dataframe with Matplotlib?

AmitDiwan
Updated on 01-Oct-2021 11:14:16

13K+ Views

To plot a Pie Chart, use the plot.pie(). The pie plot is a proportional representation of the numerical data in a column.Import the required libraries −import pandas as pd import matplotlib.pyplot as pltCreate a DataFrame −dataFrame = pd.DataFrame({ "Car": ['BMW', 'Lexus', 'Tesla', 'Mustang', 'Mercedes', 'Jaguar'], "Reg_Price": [7000, 1500, 5000, 8000, 9000, 6000] })Plot a Pie Chart for Registration Price column with label Car column −plt.pie(dataFrame["Reg_Price"], labels = dataFrame["Car"]) ExampleFollowing is the code −import pandas as pd import matplotlib.pyplot as plt # creating dataframe dataFrame = pd.DataFrame({    "Car": ['BMW', 'Lexus', 'Tesla', 'Mustang', 'Mercedes', 'Jaguar'], "Reg_Price": [7000, ... Read More

Python - Plot a Histogram for Pandas Dataframe with Matplotlib?

AmitDiwan
Updated on 30-Sep-2021 13:23:49

2K+ Views

Histogram is a representation of the distribution of data. To plot a Histogram, use the hist() method. At first, import both the libraries −import pandas as pd import matplotlib.pyplot as pltCreate a DataFrame with 2 columns −dataFrame = pd.DataFrame({    "Car": ['BMW', 'Lexus', 'Tesla', 'Mustang', 'Mercedes', 'Jaguar'], "Reg_Price": [7000, 1500, 5000, 8000, 9000, 6000] })Plot a Histogram for Registration Price column −plt.hist(dataFrame["Reg_Price"])ExampleFollowing is the code −import pandas as pd import matplotlib.pyplot as plt # creating dataframe dataFrame = pd.DataFrame({    "Car": ['BMW', 'Lexus', 'Tesla', 'Mustang', 'Mercedes', 'Jaguar'], "Reg_Price": [7000, 1500, 5000, 8000, 9000, 6000] }) # plot a ... Read More

How to plot a Pandas Dataframe with Matplotlib?

AmitDiwan
Updated on 30-Sep-2021 13:09:09

1K+ Views

We can plot Line Graph, Pie Chart, Histogram, etc. with a Pandas DataFrame using Matplotlib. For this, we need to import Pandas and Matplotlib libraries −import pandas as pd import matplotlib.pyplot as pltLet us begin plotting −Line GraphExampleFollowing is the code −import pandas as pd import matplotlib.pyplot as plt # creating a DataFrame with 2 columns dataFrame = pd.DataFrame(    {       "Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Bentley', 'Jaguar'],          "Reg_Price": [2000, 2500, 2800, 3000, 3200, 3500], "Units": [100, 120, 150, 170, 180, 200] ... Read More

Advertisements