
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Found 33676 Articles for Programming

2K+ Views
To plot data from multiple two-column text files with legends in matplotlib, we can take the following steps −Import genfromtxt from pylab. It has several options to read data from a text file and plot the data.Read two text files, test.txt and test1.txt (having two columns of data), using genfromtxt and store the data in two variables, firstfiledata and secondfiledata.Plot the data using plot() method. label will be displayed as the legend.To display the figure, use show() method.Examplefrom matplotlib import pyplot as plt; from pylab import genfromtxt; plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True firstfiledata = genfromtxt("test.txt"); secondfiledata = genfromtxt("test1.txt"); plt.plot(firstfiledata[:, 0], firstfiledata[:, 1], label="test.txt ... Read More

2K+ Views
To hide matplotlib descriptions of an instance while calling plot() method, we can take the following steps −Open Ipython instance.import numpy as npfrom matplotlib, import pyplot as pltCreate points for x, i.e., np.linspace(1, 10, 1000)Now, plot the line using plot() method.To hide the instance, use plt.plot(x); i.e., (with semi-colon)Or, use _ = plt.plot(x)ExampleIn [1]: import numpy as np In [2]: from matplotlib import pyplot as plt In [3]: x = np.linspace(1, 10, 1000) In [4]: plt.plot(x) Out[4]: [] In [5]: plt.plot(x); In [6]: _ = plt.plot(x) In [7]:OutputOut[4]: []

1K+ Views
To plot multiple columns of Pandas DataFrame using Seaborn, we can take the following steps −Make a dataframe using Pandas.Plot a bar using Seaborn's barplot() method.Rotate the xticks label by 45 angle.To display the figure, use show() method.Exampleimport pandas import matplotlib.pylab as plt import seaborn as sns import numpy as np plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True df = pandas.DataFrame({"X-Axis": [np.random.randint(10) for i in range(10)], "YAxis": [i for i in range(10)]}) bar_plot = sns.barplot(x='X-Axis', y='Y-Axis', data=df) plt.xticks(rotation=45) plt.show()Output

1K+ Views
To set different error bar colors in barplot in matplotlib, we can take the following steps −Create a figure and add a set of subplots using subplots() method.Make a barplot with data range 4, heights 2. yerr means vertical errorbars to the bar tips. The values are sizes relative to the data. Dictionary of kwargs to be passed to the errorbar method. Values of ecolor or capsize defined here take precedence over the independent kwargs.To display the figure, use show() method.Exampleimport matplotlib.pyplot as plt plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True fig, ax = plt.subplots() ax.bar(range(4), [2] * 4, yerr=range(1, 5), ... Read More

970 Views
To display Y-axis range using absolute values rather than offset values, we can take the following steps −Create x_data and y_data data points in the range of 100 to 1000.Create a figure and a set of subplots using subplots() method.Plot x_data and y_data using plot() method.If a parameter is not set, the corresponding property of the formatter is left unchanged using ticklabel_format() method with useOffset=False.To display the figure, use show() method.Examplefrom matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True x_date = range(100, 1000, 100) y_data = range(100, 1000, 100) fig, ax = plt.subplots() ax.plot(x_date, y_data) ax.ticklabel_format(useOffset=False) plt.show()OutputRead More

2K+ Views
To draw lines between two plots in matplotlib, we can take the following steps −Create a new figure or activate an existing figure.Add two axes (ax1 and ax2) to the figure as part of a subplot arrangement.Create random data x and y using numpy.Plot x and y data points on both the axes (ax1 and ax2) with color=red and marker=diamond.Initialize two variables, i and j to get the diffirent data points on the subplot.Make xy and mn tuple for positions to add a patch on the subplots.Add a patch that connects two points (possibly in different axes), con1 and con2.Add artists for con1 ... Read More

4K+ Views
To display or hide box border in matplotlib, we can use spines (value could be right, left, top or bottom) and set_visible() method to set the visibility to True or False.StepsCreate x and y data points using numpy.Create a figure and add a set of subplots using subplots() method.Plot x and y data points using plot() method, where linewidth=7 and color=red.Set visibility as True for left and bottom, and False for top and right.To display the figure, use show() method.Exampleimport numpy as np from matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True x = np.linspace(-2, 2, 10) y ... Read More

3K+ Views
To adjust (offset) the colorbar title in matplotlib, we can take the following steps −Create a random data of 4×4 dimension.Use imshow() method to display the data as an imgage.Create a colorbar for a scalar mappable instance using colorbar() method, with im mappable instance.Now, adjust (offset) the colorbar title in matplotlib, with labelpad=-1. You can assign different values to labelpad to see how it affects the colorbar title.To display the figure, use show() method.Exampleimport numpy as np from matplotlib import pyplot as plt, cm plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True data = np.random.rand(4, 4) im = plt.imshow(data, cmap=cm.jet) cb = plt.colorbar(im) cb.set_label('Image Colorbar', labelpad=-1) plt.show()OutputRead More

8K+ Views
To increase plt.title font size, we can initialize a variable fontsize and can use it in the title() method's argument.StepsCreate x and y data points using numpy.Use subtitle() method to place the title at the center.Plot the data points, x and y.Set the title with a specified fontsize.To display the figure, use show() method.Exampleimport numpy as np from matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True x = np.linspace(-1, 1, 10) y = x ** 2 fontsize = 12 plt.suptitle("Quadratic Equation", fontsize=fontsize) plt.plot(x, y) plt.title("y=x$^{2}$", fontdict={'fontsize': fontsize}) plt.show()OutputRead More

329 Views
To configure the behaviour of the backend, we can use matplotlib.rcParams['backend'] with a new backend name.StepsUse get_backend() method to get the backend name.Override the existing backend name using matplotlib.rcParams.Use get_backend() method to get the configured backend name.Exampleimport matplotlib backend = matplotlib.get_backend() print("The current backend name is: ", backend) matplotlib.rcParams['backend'] = 'TkAgg' backend = matplotlib.get_backend() print("Configured backend name is: ", backend)OutputThe current backend name is: GTK3Agg Configured backend name is: TkAgg