Found 7 Articles for Apache Spark

Apache Storm vs. Spark Side-by-Side Comparison

Satish Kumar
Updated on 02-May-2023 10:20:53
In world of big data processing, Apache Storm and Apache Spark are two popular distributed computing systems that have gained traction in recent years. Both of these systems are designed to process massive amounts of data, but they have different strengths and weaknesses. In this article, we will do a side-by-side comparison of Apache Storm and Apache Spark and explore their similarities, differences, and use cases. What is Apache Storm? Apache Storm is an open-source distributed computing system that is used for real-time stream processing. It was developed by Nathan Marz and his team at BackType, which was later acquired ... Read More

How to create an empty PySpark dataframe?

Manthan Ghasadiya
Updated on 10-Apr-2023 13:00:11
PySpark is a data processing framework built on top of Apache Spark, which is widely used for large-scale data processing tasks. It provides an efficient way to work with big data; it has data processing capabilities. A PySpark dataFrame is a distributed collection of data organized into named columns. It is similar to a table in a relational database, with columns representing the features and rows representing the observations. A dataFrame can be created from various data sources, such as CSV, JSON, Parquet files, and existing RDDs (Resilient Distributed Datasets). However, sometimes it may be required to create an ... Read More

Big Data Servers Explained

Satish Kumar
Updated on 10-Apr-2023 11:03:28
In era of digitalization, data has become most valuable asset for businesses. Organizations today generate an enormous amount of data on a daily basis. This data can be anything, from customer interactions to financial transactions, product information, and more. Managing and storing this massive amount of data requires a robust and efficient infrastructure, which is where big data servers come in. Big data servers are a type of server infrastructure designed to store, process and manage large volumes of data. In this article, we will delve deeper into what big data servers are, how they work, and some popular examples. ... Read More

Characteristics of Big Data: Types & Examples

Raunak Jain
Updated on 16-Jan-2023 16:35:41
Introduction Big Data is a term that has been making rounds in the world of technology and business for quite some time now. It refers to the massive volume of structured and unstructured data that is generated every day. With the rise of digitalization and the internet, the amount of data being generated has increased exponentially. This data, when analyzed correctly, can provide valuable insights that can help organizations make better decisions and improve their operations. In this article, we will delve into the characteristics of Big Data and the different types that exist. We will also provide real-life examples ... Read More

RDD Shared Variables In Spark

Updated on 25-Aug-2022 12:29:12
The full name of the RDD is a distributed database. Spark performance is based on this ambiguous set, enabling it to consistently cope with major data processing conditions, including MapReduce, streaming, SQL, machine learning, graphs, etc. Spark supports many programming languages, including Scala, Python, and R. RDD also supports the maintenance of material in these languages. How to create RDD Spark supports RDDS architecture in many areas, including local file systems, HDFS file systems, memory, and HBase. For the local file system, we can create RDD through the following way − val distFile = sc.textFile("file:///user/root/rddData.txt") By default, Spark takes ... Read More

Difference between MapReduce and Spark

Pradeep Kumar
Updated on 25-Jul-2022 10:20:21
Both MapReduce and Spark are examples of so-called frameworks because they make it possible to construct flagship products in the field of big data analytics. The Apache Software Foundation is responsible for maintaining these frameworks as open-source projects.MapReduce, also known as Hadoop MapReduce, is a framework that enables application writing, which in turn enables the processing of vast amounts of data on clusters in a distributed form while maintaining fault tolerance and reliability. The MapReduce model is constructed by separating the term "MapReduce" into its component parts, "Map, " which refers to the activity that must come first in the ... Read More

What are the differences between BigDL and Caffe?

Bhanu Priya
Updated on 23-Mar-2022 10:30:15
Let us understand the concepts of BigDL and Caffe before learning the differences between them.BigDLIt is a distributed deep learning framework for Apache Spark, launched by Jason Dai in the year 2016 at Intel. By using BigDL, users write deep learning applications as standard Spark programs that can directly run on top of existing Spark or Hadoop clusters.FeaturesThe features of BigDL are as follows −Rich deep learning supportEfficiently scale-outExtremely high performanceprovides plenty of deep learning modulesLayersOptimizationAdvantagesThe advantages of BigDL are as follows −SpeedEase of useDynamic natureMultilingualAdvanced analyticsDemand for spark developers.DisadvantagesThe disadvantages of BigDL are as follows −No automatic optimization processFile ... Read More