Move Legend Outside of Seaborn Scatterplot in Matplotlib

Rishikesh Kumar Rishi
Updated on 08-Jul-2021 11:00:52

2K+ Views

To move the legend to outside of a Seaborn scatterplot, we can take the following steps −Set the figure size and adjust the padding between and around the subplots.Make a Pandas dataframe with three coulmns, column1, column2 and column3.Draw a scatterplot with possibility of several semantic groupings.To place the legend outside the plot, use bbox_to_anchor in legend() method.To display the figure, use show() method.Exampleimport matplotlib.pyplot as plt import pandas as pd import seaborn as sns plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True df = pd.DataFrame(dict(col1=[2, 1, 4],                       ... Read More

Change Marker Size with Pandas Plot in Matplotlib

Rishikesh Kumar Rishi
Updated on 08-Jul-2021 10:59:32

3K+ Views

To change the marker size with pandas.plot(), we can take the following steps −Set the figure size and adjust the padding between and around the subplots.Create a Pandas dataframe with three columns, col1, col2 and col3.Use pandas.plot() with marker="*" and markersize=15.To display the figure, use show() method.Exampleimport matplotlib.pyplot as plt import pandas as pd plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True df = pd.DataFrame([[2, 1, 4], [5, 2, 1], [4, 0, 1]], columns=['col1', 'col2', 'col3']) df.plot(marker="*", markersize=15) plt.show()Output

Set Timeout for Pyplot Show in Matplotlib

Rishikesh Kumar Rishi
Updated on 08-Jul-2021 10:55:41

1K+ Views

To set timeout to pyplot.show() in Matplotlib, we can take the following steps −Set the figure size and adjust the padding between and around the subplots.Create a new backend-specific subclass of '.Timer'.Add a callback function that will be called whenever one of the plt.close() properties changes.Plot a list of data points.Start the timer.To display the figure, use show() method.Exampleimport matplotlib.pyplot as plt plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True fig = plt.figure() # set the timer interval 5000 milliseconds timer = fig.canvas.new_timer(interval = 5000) timer.add_callback(plt.close) plt.plot([1, 2, 3, 4, 5]) plt.ylabel('Y-axis Data') timer.start() plt.show()OutputThe ... Read More

Pass Arguments to Animation Function in Matplotlib

Rishikesh Kumar Rishi
Updated on 08-Jul-2021 10:54:43

892 Views

To pass arguments to animation.FuncAnimation() for a contour plot in Matplotlib in Python, we can take the following steps −Create a random data of 10☓10 dimension.Create a figure and a set of subplots using subplots() method.Make an animation by repeatedly calling a function *func* using FuncAnimation() classTo update the contour value in the function, we can define a method animate() that can be used in FuncAnimation() class.To display the figure, use show() method.Exampleimport numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True data = np.random.randn(800).reshape(10, 10, 8) fig, ax ... Read More

Export Graph to PDF using Pandas DataFrame in Matplotlib

Rishikesh Kumar Rishi
Updated on 08-Jul-2021 10:53:23

1K+ Views

To export to PDF a graph based on a Pandas dataframe, we can take the following steps −Set the figure size and adjust the padding between and around the subplots.Make a Pandas dataframe with three columns, col1, col2 and col3.Plot the dataframe using plot() method.To display the figure, use show() method.Exampleimport matplotlib.pyplot as plt import pandas as pd plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True df = pd.DataFrame([[2, 1, 4], [5, 2, 1], [4, 0, 1]], columns=['col1', 'col2', 'col3']) df.plot() plt.savefig('pd_df.pdf')OutputWhen we execute the code, it will save the following plot in a PDF with the name ... Read More

Change Autopct Text Color to White in Pie Chart using Matplotlib

Rishikesh Kumar Rishi
Updated on 08-Jul-2021 10:51:20

2K+ Views

To change the autopct text color to be white in a pie chart in Matplotlib, we can take the following steps −Set the figure size and adjust the padding between and around the subplots.Make a list of hours, activities, and colors to plot pie chart.Make a list of '.Text' instances for the numeric labels, while making the pie chart.Iterate autotexts and set the color of autotext as white.To display the figure, use show() method.Exampleimport matplotlib.pyplot as plt plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True plt.figure() hours = [8, 1, 11, 4] activities = ['sleeping', 'exercise', 'studying', 'working'] ... Read More

Plot Feature Importances of XGBoost Classifier with Matplotlib

Rishikesh Kumar Rishi
Updated on 08-Jul-2021 10:47:11

393 Views

To change the size of a plot in xgboost.plot_importance, we can take the following steps −Set the figure size and adjust the padding between and around the subplots.Load the data from a csv file.Get x and y data from the loaded dataset.Get the xgboost.XGBCClassifier.feature_importances_ model instance.Fit x and y data into the model.Print the model.Make a bar plot.To display the figure, use show() method.Examplefrom numpy import loadtxt from xgboost import XGBClassifier from matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True # data.csv contains data like -> 13, 145, 82, 19, 110, 22.2, 0.245, 57, ... Read More

Add Third Level of Ticks in Python Matplotlib

Rishikesh Kumar Rishi
Updated on 08-Jul-2021 10:40:43

355 Views

To add third level of ticks in Python Matplotlib, we can take the following steps −Set the figure size and adjust the padding between and around the subplots.Create t and s data points using numpy.Create a figure and a set of subplots.Plot t and s using plot() method.Create a twin Axes sharing the Y-axis.Plot t and s using plot() method, on axis one.Set X-axis tick position.Create majors, minors and third level of ticks value (thirds).Set major and minor ticks locator with majors, minors and third tick values (thirds)Set ticks length using tick_params().Plot a horizontal line with gray color.To display the ... Read More

Plot Hysteresis Threshold in Matplotlib

Rishikesh Kumar Rishi
Updated on 08-Jul-2021 10:39:23

710 Views

To plot hysteresis threshold in Matplotlib, we can take the following steps −Set the figure size and adjust the padding between and around the subplots.Create a figure and a set of subplots.Load some greek coins, Greek coins from Pompeii.Find, high, low, and edges of the images using the sobel filter.Apply hysteresis thresholding to "image".Display the data as an image, i.e., on a 2D regular raster, using imshow() method.Set the titles for the original image and the image with hysteresis threshold.To display the figure, use show() method.Exampleimport matplotlib.pyplot as plt from skimage import data, filters plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] ... Read More

Create Semilogx and Semilogy Plots in Matplotlib

Rishikesh Kumar Rishi
Updated on 08-Jul-2021 10:38:03

2K+ Views

To make semilogx and semilogy plots, we can take the following steps −Set the figure size and adjust the padding between and around the subplots.create a new figure or activate an existing figure.Scatter and plot x and y data points.Make a plot with log scaling on the X axis.Make a plot with log scaling on the Y axis.To display the figure, use show() method.Exampleimport matplotlib.pyplot as plt plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True x = [10, 100, 1000, 10000, 100000] y = [2, 4, 8, 16, 32] fig = plt.figure() plt.scatter(x, y) plt.plot(x, y) ... Read More

Advertisements