How to plot with xgboost.XGBCClassifier.feature_importances_ model? (Matplotlib)

PythonServer Side ProgrammingProgramming

To change the size of a plot in xgboost.plot_importance, we can take the following steps −

  • Set the figure size and adjust the padding between and around the subplots.
  • Load the data from a csv file.
  • Get x and y data from the loaded dataset.
  • Get the xgboost.XGBCClassifier.feature_importances_ model instance.
  • Fit x and y data into the model.
  • Print the model.
  • Make a bar plot.
  • To display the figure, use show() method.

Example

from numpy import loadtxt
from xgboost import XGBClassifier
from matplotlib import pyplot as plt

plt.rcParams["figure.figsize"] = [7.50, 3.50]
plt.rcParams["figure.autolayout"] = True

# data.csv contains data like -> 13, 145, 82, 19, 110, 22.2, 0.245, 57, 0
dataset = loadtxt('data.csv', delimiter=",")
X = dataset[:, 0:8]
y = dataset[:, 8]

model = XGBClassifier()
model.fit(X, y)

print(model.feature_importances_)

plt.bar(range(len(model.feature_importances_)), model.feature_importances_)

plt.show()

Output

[13:46:53] WARNING: ../src/learner.cc:1095: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.
[0.10621197 0.2424023 0.08803366 0.07818192 0.10381887 0.1486732
0.10059207 0.13208601]

raja
Published on 08-Jul-2021 10:46:31
Advertisements