- Apache Kafka - Home
- Apache Kafka - Introduction
- Apache Kafka - Fundamentals
- Apache Kafka - Cluster Architecture
- Apache Kafka - Work Flow
- Apache Kafka - Installation Steps
- Apache Kafka - Basic Operations
- Simple Producer Example
- Consumer Group Example
- Integration With Storm
- Integration With Spark
- Real Time Application(Twitter)
- Apache Kafka - Tools
- Apache Kafka - Applications
Real Time Application(Twitter)
Let us analyze a real time application to get the latest twitter feeds and its hashtags. Earlier, we have seen integration of Storm and Spark with Kafka. In both the scenarios, we created a Kafka Producer (using cli) to send message to the Kafka ecosystem. Then, the storm and spark inte-gration reads the messages by using the Kafka consumer and injects it into storm and spark ecosystem respectively. So, practically we need to create a Kafka Producer, which should −
- Read the twitter feeds using Twitter Streaming API,
- Process the feeds,
- Extract the HashTags and
- Send it to Kafka.
Once the HashTags
are received by Kafka, the Storm / Spark integration receive the infor-mation and send it to Storm / Spark ecosystem.
Twitter Streaming API
The Twitter Streaming API can be accessed in any programming language. The twitter4j is an open source, unofficial Java library, which provides a Java based module to easily access the Twitter Streaming API. The twitter4j provides a listener based framework to access the tweets. To access the Twitter Streaming API, we need to sign in for Twitter developer account and should get the following OAuth authentication details.
- Customerkey
- CustomerSecret
- AccessToken
- AccessTookenSecret
Once the developer account is created, download the twitter4j jar files and place it in the java class path.
The Complete Twitter Kafka producer coding (KafkaTwitterProducer.java) is listed below −
import java.util.Arrays;
import java.util.Properties;
import java.util.concurrent.LinkedBlockingQueue;
import twitter4j.*;
import twitter4j.conf.*;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
public class KafkaTwitterProducer {
public static void main(String[] args) throws Exception {
LinkedBlockingQueue<Status> queue = new LinkedBlockingQueue<Sta-tus>(1000);
if(args.length < 5){
System.out.println(
"Usage: KafkaTwitterProducer <twitter-consumer-key>
<twitter-consumer-secret> <twitter-access-token>
<twitter-access-token-secret>
<topic-name> <twitter-search-keywords>");
return;
}
String consumerKey = args[0].toString();
String consumerSecret = args[1].toString();
String accessToken = args[2].toString();
String accessTokenSecret = args[3].toString();
String topicName = args[4].toString();
String[] arguments = args.clone();
String[] keyWords = Arrays.copyOfRange(arguments, 5, arguments.length);
ConfigurationBuilder cb = new ConfigurationBuilder();
cb.setDebugEnabled(true)
.setOAuthConsumerKey(consumerKey)
.setOAuthConsumerSecret(consumerSecret)
.setOAuthAccessToken(accessToken)
.setOAuthAccessTokenSecret(accessTokenSecret);
TwitterStream twitterStream = new TwitterStreamFactory(cb.build()).get-Instance();
StatusListener listener = new StatusListener() {
@Override
public void onStatus(Status status) {
queue.offer(status);
// System.out.println("@" + status.getUser().getScreenName()
+ " - " + status.getText());
// System.out.println("@" + status.getUser().getScreen-Name());
/*for(URLEntity urle : status.getURLEntities()) {
System.out.println(urle.getDisplayURL());
}*/
/*for(HashtagEntity hashtage : status.getHashtagEntities()) {
System.out.println(hashtage.getText());
}*/
}
@Override
public void onDeletionNotice(StatusDeletionNotice statusDeletion-Notice) {
// System.out.println("Got a status deletion notice id:"
+ statusDeletionNotice.getStatusId());
}
@Override
public void onTrackLimitationNotice(int numberOfLimitedStatuses) {
// System.out.println("Got track limitation notice:" +
num-berOfLimitedStatuses);
}
@Override
public void onScrubGeo(long userId, long upToStatusId) {
// System.out.println("Got scrub_geo event userId:" + userId +
"upToStatusId:" + upToStatusId);
}
@Override
public void onStallWarning(StallWarning warning) {
// System.out.println("Got stall warning:" + warning);
}
@Override
public void onException(Exception ex) {
ex.printStackTrace();
}
};
twitterStream.addListener(listener);
FilterQuery query = new FilterQuery().track(keyWords);
twitterStream.filter(query);
Thread.sleep(5000);
//Add Kafka producer config settings
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("acks", "all");
props.put("retries", 0);
props.put("batch.size", 16384);
props.put("linger.ms", 1);
props.put("buffer.memory", 33554432);
props.put("key.serializer",
"org.apache.kafka.common.serializa-tion.StringSerializer");
props.put("value.serializer",
"org.apache.kafka.common.serializa-tion.StringSerializer");
Producer<String, String> producer = new KafkaProducer<String, String>(props);
int i = 0;
int j = 0;
while(i < 10) {
Status ret = queue.poll();
if (ret == null) {
Thread.sleep(100);
i++;
}else {
for(HashtagEntity hashtage : ret.getHashtagEntities()) {
System.out.println("Hashtag: " + hashtage.getText());
producer.send(new ProducerRecord<String, String>(
top-icName, Integer.toString(j++), hashtage.getText()));
}
}
}
producer.close();
Thread.sleep(5000);
twitterStream.shutdown();
}
}
Compilation
Compile the application using the following command −
javac -cp /path/to/kafka/libs/*:/path/to/twitter4j/lib/*:. KafkaTwitterProducer.java
Execution
Open two consoles. Run the above compiled application as shown below in one console.
java -cp /path/to/kafka/libs/*:/path/to/twitter4j/lib/*: . KafkaTwitterProducer <twitter-consumer-key> <twitter-consumer-secret> <twitter-access-token> <twitter-ac-cess-token-secret> my-first-topic food
Run any one of the Spark / Storm application explained in the previous chapter in another win-dow. The main point to note is that the topic used should be same in both cases. Here, we have used my-first-topic as the topic name.
Output
The output of this application will depend on the keywords and the current feed of the twitter. A sample output is specified below (storm integration).
. . . food : 1 foodie : 2 burger : 1 . . .