- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Advantages and Limitations of High Transmission Voltage
Advantages of High Transmission Voltage
Electric power is transmitted at very high voltages due to some technical and economic reasons which are described as follows −
1. Reduces the Volume of Conductor Material
Consider the electric power being transmitting through the three-phase three-wire transmission system.
Let,
P = Power transmitted (in Watts)
V = Line voltage (in Volts)
$\mathrm{cos}\:\phi$ = Load power factor
R = Resistance per conductor (in ohms)
$\mathit{\rho}$ = Resistivity of conductor material
l = length of transmission line (in meters)
a = cross sectional area of conductor
Therefore, the load current is given by,
$$\mathrm{\mathit{I}\:=\:\frac{\mathit{P}}{\sqrt{3}\mathit{V}\mathrm{cos\:\phi }}}$$
And the resistance per conductor is
$$\mathrm{\mathit{R}\:=\:\rho \:\frac{\mathit{l}}{\mathit{a}}}$$
Thus, the total power loss in the transmission line is
$$\mathrm{\mathit{W}\:=\:3\mathit{I^{\mathrm{2}}}\mathit{R}\:=\:3\mathrm{\left( \frac{\mathit{P}}{\sqrt{3}cos\:\phi} \right )^{\mathrm{2}}}\:\times \:\mathrm{\left(\rho \:\frac{\mathit{l}}{\mathit{a}} \right )}\:=\:\frac{\mathit{\rho lP^{\mathrm{2}}}}{\mathit{aV^{\mathrm{2}}\mathrm{cos^{\mathrm{2}}\:\phi }}}}$$
$$\mathrm{\therefore \mathrm{Area\: of\: cross \:section},\mathit{a}\:=\:\frac{\mathit{P^{\mathrm{2}}\rho \mathit{l}}}{\mathit{WV^{\mathrm{2}}\mathrm{cos^{\mathrm{2}}\:\phi }}}}$$
As there are three conductors, the total volume of conductor material required is given by,
$$\mathrm{\mathrm{Total\: volume\: of\: conductor \:material}\:=\:3\:\times \:\mathit{a}\:\times \:\mathit{l}\:=\:3\:\times \:\mathrm{\left (\frac{\mathit{P^{\mathrm{2}}\rho \mathit{l}}}{\mathit{WV^{\mathrm{2}}\:\mathrm{cos^{2}}\:\phi }} \right )\:\times \:\mathit{l}}}$$
$$\mathrm{\therefore \mathrm{Volume \:of\: conductor \:material}\:=\:\frac{3\mathit{P^{\mathrm{2}}\rho \mathit{l^{\mathrm{2}}}}}{\mathit{WV^{\mathrm{2}}\:\mathrm{cos^{2}}\:\phi }}\:\:\:\cdot \cdot\cdot \mathrm{\left ( 1 \right )}}$$
From equation (1), it is clear that for the given values of P, $\rho$, l and W, the volume of conductor material required is inversely proportional to the square of transmission voltage and load power factor. Therefore, if the power is transmitted at high voltage, then lesser is the conductor material required.
2. Decreases Percentage Line Drop
The voltage drop in the transmission line is given by,
$$\mathrm{\mathrm{Line \:drop}\:=\:\mathit{IR}\:=\:\mathit{I}\:\times \:\mathrm{\left ( \rho \frac{\mathit{l}}{\mathit{a}} \right )}}$$
Let J is the current density of the conductor, then
$$\mathrm{\mathit{a}\:=\:\frac{\mathit{I}}{\mathit{J}}}$$
$$\mathrm{\Rightarrow \mathrm{Line\: drop}\:=\:\mathit{I}\:\times \mathrm{\left [ \rho \:\frac{\mathit{l}}{\mathrm{\left ( \frac{\mathit{I}}{J} \right )}} \right ]}\:=\:\rho \mathit{Jl}}$$
$$\mathrm{\therefore \mathrm{Percentage\: line\: drop}\:=\:\frac{\mathit{\rho Jl}}{\mathit{V}}\:\times \:100\%\:\:\:\cdot \cdot \cdot \mathrm{\left ( 2 \right )}}$$
From equation (2), it is clear that the percentage line drop is inversely proportional to the transmission voltage. Therefore, the percentage line drop decreases when the transmission voltage increases.
3. Increases Transmission Efficiency
The input power to the transmission line is given by,
$$\mathrm{\mathit{P_{\mathit{in}}}\:=\:\mathit{P}\:+\:\mathrm{Total \:power\: loss}\:=\:\mathit{P}\:+\:\frac{\mathit{\rho lP^{\mathrm{2}}}}{\mathit{aV^{\mathrm{2}}\mathrm{cos^{\mathrm{2}}\:\phi }}}}$$
$$\mathrm{\Rightarrow \mathit{P_{\mathit{in}}}\:=\:\mathit{P}\:+\:\frac{\rho \mathit{lP}^{\mathrm{2}}\:\times \:\mathit{J}}{\mathit{V^{\mathrm{2}}\mathrm{cos^{\mathrm{2}}\:\phi }\:\times \:\mathit{I}}}\:=\:\mathit{P}\:+\:\mathrm{\left ( \frac{\rho \mathit{lP^{\mathrm{2}}J}}{\mathit{V^{\mathrm{2}}\mathrm{cos^{2}}\:\phi }}\:\times \:\frac{1}{\mathit{I}} \right )}}$$
$$\mathrm{\Rightarrow \mathit{P_{\mathit{in}}}\:=\:\mathit{P}\:+\:\mathrm{\left [ \mathrm{\left ( \frac{\rho \mathit{l}\mathit{P}^{\mathrm{2}}\mathit{J}}{\mathit{V^{\mathrm{2}}}\mathrm{cos}^{\mathrm{2}}\:\phi}\right )}\:\times \:\mathrm{\left(\frac{\sqrt{3}\mathit{V}\mathrm{cos}\:\phi}{\mathit{P}} \right )} \right ]}}$$
$$\mathrm{\Rightarrow \mathit{P_{\mathit{in}}}\:=\:\mathit{P}\:+\:\frac{\sqrt{3}\rho \mathit{lPJ}}{\mathit{V}\mathrm{cos\:\phi }}\:=\:\mathit{P}\mathrm{\left(1\:+\: \frac{\sqrt{3}\rho \mathit{lJ}}{\mathit{V}\mathrm{cos\:\phi }} \right )}}$$
Since the transmission efficiency is defined as,
$$\mathrm{\eta \:=\:\frac{\mathrm{Output\: power}}{\mathrm{Input\:power}}\:=\:\frac{\mathit{P}}{\mathit{P}\mathrm{\left(1\:+\:\frac{\sqrt{3}\rho \mathit{lJ}}{\mathit{V}\mathrm{cos\:\phi }} \right)}}\:=\:\frac{1}{\mathrm{\left(1\:+\:\frac{\sqrt{3}\rho \mathit{lJ}}{\mathit{V}\mathrm{cos\:\phi }} \right )}}}$$
By using Binomial theorem, we get,
$$\mathrm{\eta \:\cong \:\mathrm{\left ( 1\:-\:\frac{\sqrt{3}\rho \mathit{lJ}}{\mathit{V}\mathrm{cos\:\phi }} \right )}\:\:\:\cdot \cdot \cdot \mathrm{\left ( 3 \right )}}$$
Since $\rho$, l and J are constants, therefore the transmission efficiency increases when the transmission voltage increases.
Limitations of High Transmission Voltage
The limitations of the high transmission voltage in AC transmission system are as follows −
High transmission voltage increases the cost of insulting the conductors.
High voltage also increases the cost of electrical equipment such as transformers, switches and circuit breakers, etc.
Therefore, there is also a limit to the high transmission voltage which can be economically employed in transmission of electric power.
- Related Articles
- How to determine Economic Transmission Voltage?
- What are the advantages and limitations of JDBC PreparedStatement?
- Submerged Arc Welding: Process, Advantages, Limitations and Applications
- What are the advantages and disadvantages of DC and AC Transmission?
- Nominal Voltage, Rated Voltage and Operating Voltage
- High Frequency Eddy Current Heating: Working, Advantages, Disadvantages and Applications
- Features And Limitations Of Planning
- Limitations and Criticism of Alder’s Theory
- Approximate Voltage Drop in a Transformer and Voltage regulation of a Transformer
- Transmission, Absorption and Reflection of Light
- Applications and Limitations of Diffie-Hellman algorithm
- Karnaugh Map and its Limitations
- What are importance and limitations of financial ratios?
- Limitations Of Financial Analysis
- Limitations Of Financial Statements
