Add or Subtract Fractions With Different Denominators Advanced Online Quiz



Following quiz provides Multiple Choice Questions (MCQs) related to Add or Subtract Fractions With Different Denominators Advanced. You will have to read all the given answers and click over the correct answer. If you are not sure about the answer then you can check the answer using Show Answer button. You can use Next Quiz button to check new set of questions in the quiz.

Questions and Answers

Answer : A

Explanation

Step 1:

$\frac{2}{5}$ + $\frac{3}{8}$

Here the fractions have unlike denominators. So we find LCD.

LCD is 5 × 8 = 40.

Step 2:

Rewriting as equivalent fractions

$\frac{16}{40}$ + $\frac{15}{40}$ = $\frac{(16+15)}{40}$ = $\frac{31}{40}$

Step 3:

So, $\frac{2}{5}$ + $\frac{3}{8}$ = $\frac{31}{40}$

Q 2 - Subtract $\frac{5}{8}$$\frac{7}{12}$

Answer : D

Explanation

Step 1:

$\frac{5}{8}$$\frac{7}{12}$

Here the fractions have unlike denominators. So we find LCD. LCD is 24.

Step 2:

Rewriting as equivalent fractions

$\frac{15}{24}$$\frac{14}{24}$ = $\frac{(15-14)}{24}$ = $\frac{1}{24}$

Step 3:

So, $\frac{5}{8}$$\frac{7}{12}$ = $\frac{1}{24}$

Answer : C

Explanation

Step 1:

$\frac{2}{7}$ + $\frac{3}{8}$

Here the fractions have unlike denominators. So we find LCD.

LCD is 7 × 8 = 56.

Step 2:

Rewriting as equivalent fractions

$\frac{16}{56}$ + $\frac{21}{56}$ = $\frac{(16+21)}{56}$ = $\frac{37}{56}$

Step 3:

So, $\frac{2}{7}$ + $\frac{3}{8}$ = $\frac{37}{56}$

Q 4 - Subtract $\frac{6}{5}$$\frac{5}{7}$

Answer : B

Explanation

Step 1:

$\frac{6}{5}$$\frac{5}{7}$

Here the fractions have unlike denominators. So we find LCD.

LCD is 5 × 7 = 35.

Step 2:

Rewriting as equivalent fractions

$\frac{42}{35}$$\frac{25}{35}$ = $\frac{(42-25)}{35}$ = $\frac{17}{35}$

Step 3:

So, $\frac{6}{5}$$\frac{5}{7}$ = $\frac{17}{35}$

Answer : A

Explanation

Step 1:

$\frac{2}{7}$ + $\frac{5}{9}$

Here the fractions have unlike denominators. So we find LCD.

LCD is 7 × 9 = 63.

Step 2:

Rewriting as equivalent fractions

$\frac{18}{63}$ + $\frac{35}{63}$ = $\frac{(18+35)}{63}$ = $\frac{53}{63}$

Step 3:

So, $\frac{2}{7}$ + $\frac{5}{9}$ = $\frac{53}{63}$

Q 6 - Subtract $\frac{5}{7}$ - $\frac{7}{11}$

Answer : B

Explanation

Step 1:

$\frac{5}{7}$ - $\frac{7}{11}$

Here the fractions have unlike denominators. So we find LCD.

LCD is 7 × 11 = 77.

Step 2:

Rewriting as equivalent fractions

$\frac{55}{77}$$\frac{49}{77}$ = $\frac{(55-49)}{77}$ = $\frac{6}{77}$

Step 3:

So, $\frac{5}{7}$ - $\frac{7}{11}$ = $\frac{6}{77}$

Answer : C

Explanation

Step 1:

$\frac{2}{5}$ + $\frac{4}{9}$

Here the fractions have unlike denominators. So we find LCD.

LCD is 5 × 9 = 45.

Step 2:

Rewriting as equivalent fractions

$\frac{18}{45}$ + $\frac{20}{45}$ = $\frac{(18+20)}{45}$ = $\frac{38}{45}$

Step 3:

So, $\frac{2}{5}$ + $\frac{4}{9}$ = $\frac{38}{45}$

Q 8 - Subtract $\frac{7}{8}$$\frac{9}{12}$

Answer : D

Explanation

Step 1:

$\frac{7}{8}$$\frac{9}{12}$

Here the fractions have unlike denominators. So we find LCD.

LCD is 24.

Step 2:

Rewriting as equivalent fractions

$\frac{21}{24}$$\frac{18}{24}$ = $\frac{(21-18)}{24}$ = $\frac{3}{24}$ = $\frac{1}{8}$

Step 3:

So, $\frac{7}{8}$$\frac{9}{12}$ = $\frac{1}{8}$

Answer : A

Explanation

Step 1:

$\frac{3}{5}$ + $\frac{2}{8}$

Here the fractions have unlike denominators. So we find LCD.

LCD is 5 × 8 = 40

Step 2:

Rewriting as equivalent fractions

$\frac{24}{40}$ + $\frac{10}{40}$ = $\frac{(24+10)}{40}$ = $\frac{34}{40}$ = $\frac{17}{20}$

Step 3:

So, $\frac{3}{5}$ + $\frac{2}{8}$ = $\frac{17}{20}$

Q 10 - Subtract $\frac{7}{8}$ - $\frac{8}{11}$

Answer : B

Explanation

Step 1:

$\frac{7}{8}$ - $\frac{8}{11}$

Here the fractions have unlike denominators. So we find LCD.

LCD is 8 × 11 = 88

Step 2:

Rewriting as equivalent fractions

$\frac{77}{88}$$\frac{64}{88}$ = $\frac{(77-64)}{88}$ = $\frac{13}{88}$

Step 3:

So, $\frac{7}{8}$ - $\frac{8}{11}$ = $\frac{13}{88}$


add_or_subtract_fraction_with_different_denominator_advanced.htm

Advertisements