- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
What is Supervised Learning?
Supervised learning, one of the most used methods in ML, takes both training data (also called data samples) and its associated output (also called labels or responses) during the training process. The major goal of supervised learning methods is to learn the association between input training data and their labels. For this it performs multiple training data instances.
Let’s understand its working with the help of below given example −
Suppose we have,
Input variables − m and
Output variable − N
The mapping function from the input to output is as follows −
𝑁 = 𝑓(𝑚)
To learn such mapping function, we need an algorithm whose key objective is to approximate the mapping function so well that one can easily predict the N i.e., the output variable for new input data as well.
Supervised algorithms are called supervised because the machine learning model learns from data samples where the output is known in advance. In this sense, the whole process of learning in supervised learning algorithms can be thought as it is being supervised by a supervisor.
Some of the well-known supervised machine learning algorithms are KNN (k-nearest neighbors), Decision tree, Logistic Regression, and Random Forest.
Based on machine learning based tasks, we can divide supervised learning algorithms in following two classes −
Classification − Classification-based tasks predict the categorical output responses or labels for the given training data. This output, which will belong to a specific discrete category, is based on what our ML model learns in the training phase. For example, to predict high-risk patients and discriminate such patients from low-risk patients is a classification task.
Regression − Regression-based tasks predict the continues numerical output responses or labels for the given training data. This output will also be based on what our ML model learns in the training phase. For example, to predict the price of houses is a regression task.
- Related Articles
- What is Reinforcement Learning? How is it different from supervised and unsupervised learning?
- Difference between supervised and unsupervised learning.
- What is Semi-Supervised Cluster Analysis?
- What is Machine Learning?
- What is Unsupervised Learning?
- What is Active Learning?
- What is Q-learning with respect to reinforcement learning in Machine Learning?
- What is Association rule learning?
- What is a Machine Learning?
- What is Epoch in Machine Learning?
- What is Bellman Equation in Reinforcement Learning?
- What is a Neural Network in Machine Learning?
- What are the different learning styles in machine learning algorithms?
- What is time series with respect to Machine Learning?
- What is the use of learning the Python language?
