- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
What are the techniques for Mining Negative Patterns?
The first class of techniques produced for mining infrequent patterns considers each item as a symmetric binary variable. The transaction information can be binarized by augmenting it with negative items. It displays an instance of changing the initial data into transactions having both positive and negative items. By using current frequent itemset generation algorithms including Apriori on the augmented transactions,some negative itemsets can be derived.
Such an approach is possible only if several variables are considered as symmetric binary (i.e., it is viewed for negative patterns containing the negation of only a small number of items). If each item should be considered as symmetric binary, the problem becomes computationally difficult because of the following reasons.
The multiple items doubles when each item is augmented with its corresponding negative item. Rather than exploring an itemset lattice of size 2d, where d is the number of items in the initial data set, the lattice becomes higher.
Support-based pruning is no more efficient when negative items are augmented. For every variable x, either x or x’ has provided higher than or equal to 50%. Therefore, even if the support threshold is as large as 50%, half of the items will frequent.
For lower thresholds, several items and possibly itemsets including them will be frequent. The support-based pruning methods engaged by Apriori are efficient only when the support for most itemsets is low; therefore, the various frequent itemsets grow exponentially.
The width of each transaction improves when negative items are augmented. Consider that there are d items available in the initial data set. For sparse data sets including market basket transactions, the width of each transaction influence to be much smaller than d.
Accordingly, the maximum size of a frequent itemset, which is limited by the maximum transaction width, wmax, influences to be associatively small. When negative items are contained, the width of the transactions increases to d because an item is present in the transaction or absent from the transaction, but not both.
Because the maximum transaction width has increased from wmax to d, this will increase the number of multiple frequent itemsets rapidly changes. Accordingly, some current algorithms tend to break down when they are used to the lengthy data set.
The prior brute-force approach is computationally costly because it forces us to decide the support for a huge number of positive and negative patterns. Rather than augmenting the data set with negative items, another approach is to decide the support of the negative itemsets depending on the support of their correlating positive items.
- Related Articles
- What are the techniques of Text Mining?
- What are the techniques of data mining?
- What about using statistical techniques for spatial data mining?
- Design patterns for data mining/machine learning projects
- What is the techniques of statistical data mining?
- What are the techniques for Data Cube Computations?
- What are the Biometric techniques used for identification?
- What are the various techniques for data extraction?
- What are the data Mining methods for Recommender Systems?
- What are the clustering methods for spatial data mining?
- What are the Techniques for Monitoring of Accounts Receivables?
- What are the best Python 2.7 modules for data mining?
- What are the areas of text mining in data mining?
- What are the aspects of data mining for Biological Data Analysis?
- What are the data mining transformations?
