- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
The following table gives the distribution of the lifetime of 400 neon lamps:
Life time: (in hours) | Number of lamps |
1500-2000 | 14 |
2000-2500 | 56 |
2500-3000 | 60 |
3000-3500 | 86 |
3500-4000 | 74 |
4000-4500 | 62 |
4500-5000 | 48 |
Find the median lifetime of a lamp."
Given:
The given table gives the distribution of the lifetime of 400 neon lamps.
To do:
We have to find the median life.
Solution:
Here,
$N = 400$
$\frac{N}{2} = \frac{400}{2} = 200$
The cumulative frequency just greater than $\frac{N}{2}$ is 216 and the corresponding class is 3000 – 3500.
This implies, that 3000– 3500 is the median class.
Therefore,
$l = 3000, f = 86, F = 130$ and $h = (3500 - 3000) = 500$
Median $=\mathrm{l}+\frac{\frac{\mathrm{N}}{2}-\mathrm{F}}{\mathrm{f}} \times \mathrm{h}$
$=3000+\frac{200-130}{86} \times 500$
$=3000+\frac{70}{86} \times 500$
$=3000+\frac{35000}{86}$
$= 3000 + 406.98$
$= 3406.98$
The median life is 3406.98 hours.
Advertisements