- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
The distance between the points $ (0,5) $ and $ (-5,0) $ is
(A) 5
(B) $ 5 \sqrt{2} $
(C) $ 2 \sqrt{5} $
(D) 10
Given:
Two points \( (0,5) \) and \( (-5,0) \)
To do:
We have to find the distance between the points.
Solution:
We know that,
If there two points $( {x_{1},\ y_{1})\ and\ ( x_2},\ y_{2})$, then
The distance between the two points $=\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}$
Here, $x_{1}=0,\ y_{1}=5,\ x_{2}=-5\ and\ y_{2}=0$,
On substituting these value in formula,
Distance between the two points $=\sqrt{( -5-0)^{2}+(0-( 5))^{2}}$
$=\sqrt{( -5)^{2}+( -5)^{2}}$
$=\sqrt{25+25}$
$=\sqrt{50}$
$=5\sqrt2$
Therefore,
The distance between the points \( (0,5) \) and \( (-5,0) \) is $5\sqrt2$.
- Related Articles
- $\frac{\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}}+\frac{\sqrt{5}-\sqrt{2}}{\sqrt{5}+\sqrt{2}}=a+b \sqrt{10}$, find a and b.
- Show that : \( \frac{12}{3+\sqrt{5}-2 \sqrt{2}}=\sqrt{10}+\sqrt{5}-\sqrt{2}+1 \)
- Simplify the following expressions:\( (\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2}) \)
- Which of the following is the compound surd: (a) $4 \sqrt{3}$ (b) $\sqrt{3}$(c) $2 \sqrt[4]{5}$(d) $\sqrt{3}+\sqrt{5}-\sqrt{7}$
- Rationalise the denominator and simplify:\( \frac{2 \sqrt{6}-\sqrt{5}}{3 \sqrt{5}-2 \sqrt{6}} \)
- Simplify each of the following expressions:(i) \( (3+\sqrt{3})(2+\sqrt{2}) \)(ii) \( (3+\sqrt{3})(3-\sqrt{3}) \)(iii) \( (\sqrt{5}+\sqrt{2})^{2} \)(iv) \( (\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2}) \)
- Simplify:\( \frac{2}{\sqrt{5}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{2}}-\frac{3}{\sqrt{5}+\sqrt{2}} \)
- Factorize:$5 \sqrt{5}x^2 + 20x + 3\sqrt{5}$
- Simplify:\( \frac{1}{2+\sqrt{3}}+\frac{2}{\sqrt{5}-\sqrt{3}}+\frac{1}{2-\sqrt{5}} \)
- If $a+8\sqrt{5}b=8+(\frac{\sqrt{5}}{8})-\sqrt{5}+8-(\frac{\sqrt{5}}{8})+\sqrt{5}$, find a and b.
- Simplify the following expressions:\( (2 \sqrt{5}+3 \sqrt{2})^{2} \)
- If $\frac{7+\sqrt{5}}{7-\sqrt{5}}=a+b \sqrt{5}$, find a and b.
- Rationalise the denominator and simplify:\( \frac{2 \sqrt{3}-\sqrt{5}}{2 \sqrt{2}+3 \sqrt{3}} \)
- Solve: $( 5\sqrt{2})^{2}$.
- If the distance between the points \( \mathrm{A}(a, 2) \) and \( \mathrm{B}(3,-5) \) is \( \sqrt{53} \), find the possible values of \( a \).

Advertisements