- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Simplify:$ \frac{2}{\sqrt{5}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{2}}-\frac{3}{\sqrt{5}+\sqrt{2}} $
Given:
\( \frac{2}{\sqrt{5}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{2}}-\frac{3}{\sqrt{5}+\sqrt{2}} \)
To do:
We have to simplify the given expression.
Solution:
We know that,
Rationalising factor of a fraction with denominator ${\sqrt{a}}$ is ${\sqrt{a}}$.
Rationalising factor of a fraction with denominator ${\sqrt{a}-\sqrt{b}}$ is ${\sqrt{a}+\sqrt{b}}$.
Rationalising factor of a fraction with denominator ${\sqrt{a}+\sqrt{b}}$ is ${\sqrt{a}-\sqrt{b}}$.
Therefore,
$\frac{2}{\sqrt{5}+\sqrt{3}}=\frac{2(\sqrt{5}-\sqrt{3})}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}$
$=\frac{2(\sqrt{5}-\sqrt{3})}{(\sqrt{5})^{2}-(\sqrt{3})^{2}}$
$=\frac{2(\sqrt{5}-\sqrt{3})}{5-3}$
$=\frac{2(\sqrt{5}-\sqrt{3})}{2}$
$=\sqrt{5}-\sqrt{3}$
$\frac{1}{\sqrt{3}+\sqrt{2}}=\frac{1 \times(\sqrt{3}-\sqrt{2})}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}$
$=\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3})^{2}-(\sqrt{2})^{2}}$
$=\frac{\sqrt{3}-\sqrt{2}}{3-2}$
$=\frac{\sqrt{3}-\sqrt{2}}{1}$
$=\sqrt{3}-\sqrt{2}$
$\frac{3}{\sqrt{5}+\sqrt{2}}=\frac{3(\sqrt{5}-\sqrt{2})}{(\sqrt{5}+\sqrt{2})(\sqrt{5}-\sqrt{2})}$
$=\frac{3(\sqrt{5}-\sqrt{2})}{(\sqrt{5})^{2}-(\sqrt{2})^{2}}$
$=\frac{3(\sqrt{5}-\sqrt{2})}{5-2}$
$=\frac{3(\sqrt{5}-\sqrt{2})}{3}$
$=\sqrt{5}-\sqrt{2}$
Therefore,
$\frac{2}{\sqrt{5}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{2}}-\frac{3}{\sqrt{5}+\sqrt{2}}=(\sqrt{5}-\sqrt{3})+(\sqrt{3}-\sqrt{2})-(\sqrt{5}-\sqrt{2})$
$=\sqrt{5}-\sqrt{3}+\sqrt{3}-\sqrt{2}-\sqrt{5}+\sqrt{2}$
$=0$
Hence, $\frac{2}{\sqrt{5}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{2}}-\frac{3}{\sqrt{5}+\sqrt{2}}=0$.