- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Test array values for NaN and store the result in a new location in Numpy
To test array values for NaN, use the numpy.isnan() method in Python Numpy. The new location where we will store the result is a new array. Returns True where x is NaN, false otherwise. This is a scalar if x is a scalar. The condition is broadcast over the input. At locations where the condition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain its original value. Note that if an uninitialized out array is created via the default out=None, locations within it where the condition is False will remain uninitialized.
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity.
Steps
At first, import the required library −
import numpy as np
Create an array with some NaN values −
arr = np.array([1, 2, 10, 50, -np.nan, 0., np.nan, np.inf])
Display the array −
print("Array...
", arr)
Get the type of the array −
print("
Our Array type...
", arr.dtype)
Get the dimensions of the Array −
print("
Our Array Dimensions...
",arr.ndim)
Get the number of elements in the Array −
print("
Number of elements...
", arr.size)
Create another array with the same shape to store the result −
arrRes = np.array([5, 5, 5, 5, 5, 5, 5, 5])
To test array values for NaN, use the numpy.isnan() method in Python Numpy. The new location where we will store the result is arrRes −
print("
Test array for NaN...
",np.isnan(arr, arrRes))
Check the value of the new array where our result is stored −
print("
Result...
",arrRes)
Example
import numpy as np # Create an array with some NaN values arr = np.array([1, 2, 10, 50, -np.nan, 0., np.nan, np.inf]) # Display the array print("Array...
", arr) # Get the type of the array print("
Our Array type...
", arr.dtype) # Get the dimensions of the Array print("
Our Array Dimensions...
",arr.ndim) # Get the number of elements in the Array print("
Number of elements...
", arr.size) # Create another array with the same shape to store the result arrRes = np.array([5, 5, 5, 5, 5, 5, 5, 5]) # To test array values for NaN, use the numpy.isnan() method in Python Numpy # The new location where we will store the result is arrRes print("
Test array for NaN...
",np.isnan(arr, arrRes)) # Check the value of the new array where our result is stored print("
Result...
",arrRes)
Output
Array... [ 1. 2. 10. 50. nan 0. nan inf] Our Array type... float64 Our Array Dimensions... 1 Number of elements... 8 Test array for NaN... [0 0 0 0 1 0 1 0] Result... [0 0 0 0 1 0 1 0]
- Related Articles
- Test Numpy array values for infiniteness and store the result in a new location
- Test array values for finiteness and store the result in a new location in Numpy
- Test array values for NaT and store the result in a new location in Numpy
- Test array values for NaN in Numpy
- Compute the absolute values element-wise and store the result in a new location in Numpy
- Return the floor of the array elements and store the result in a new location in Numpy
- Return the ceil of the array elements and store the result in a new location in Numpy
- Return the truncated value of the array elements and store the result in a new location in Numpy
- Return the next floating-point value and store the result in a new location in Numpy
- Return element-wise True where signbit is set (less than zero) and store the result in a new location in Numpy
- Test element-wise for NaN in Numpy
- Test array values for finiteness in Numpy
- Test array values for NaT (not a time) in Numpy
- Test array values for positive or negative infinity in Numpy
- Clip (limit) the values in an array and place the result in another array in Numpy
